001021463 001__ 1021463
001021463 005__ 20240226075349.0
001021463 0247_ $$2arXiv$$aarXiv:2310.15103
001021463 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00756
001021463 037__ $$aFZJ-2024-00756
001021463 041__ $$aEnglish
001021463 088__ $$2arXiv$$aarXiv:2310.15103
001021463 1001_ $$0P:(DE-Juel1)179462$$aHerrig, Tobias$$b0$$eCorresponding author$$ufzj
001021463 245__ $$aEmulating moir\'e materials with quasiperiodic circuit quantum electrodynamics
001021463 260__ $$barXiv$$c2023
001021463 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1705654086_18115
001021463 3367_ $$2ORCID$$aWORKING_PAPER
001021463 3367_ $$028$$2EndNote$$aElectronic Article
001021463 3367_ $$2DRIVER$$apreprint
001021463 3367_ $$2BibTeX$$aARTICLE
001021463 3367_ $$2DataCite$$aOutput Types/Working Paper
001021463 500__ $$a11 pages, 5 figures
001021463 520__ $$aTopological bandstructures interfering with moir\'e superstructures give rise to a plethora of emergent phenomena, which are pivotal for correlated insulating and superconducting states of twisttronics materials. While quasiperiodicity was up to now a notion mostly reserved for solid-state materials and cold atoms, we here demonstrate the capacity of conventional superconducting circuits to emulate moir\'e physics in charge space. With two examples, we show that Hofstadter's butterfly and the magic-angle effect, are directly visible in spectroscopic transport measurements. Importantly, these features survive in the presence of harmonic trapping potentials due to parasitic linear capacitances. Our proposed platform benefits from unprecedented tuning capabilities, and opens the door to probe incommensurate physics in virtually any spatial dimension.
001021463 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001021463 588__ $$aDataset connected to arXivarXiv
001021463 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001021463 650_7 $$2Other$$aSuperconductivity (cond-mat.supr-con)
001021463 650_7 $$2Other$$aQuantum Physics (quant-ph)
001021463 650_7 $$2Other$$aFOS: Physical sciences
001021463 7001_ $$0P:(DE-Juel1)186675$$aKoliofoti, Christina$$b1$$ufzj
001021463 7001_ $$0P:(DE-HGF)0$$aPixley, Jedediah H.$$b2
001021463 7001_ $$0P:(DE-HGF)0$$aKönig, Elio J.$$b3
001021463 7001_ $$0P:(DE-Juel1)168366$$aRiwar, Roman-Pascal$$b4$$ufzj
001021463 8564_ $$uhttps://juser.fz-juelich.de/record/1021463/files/2310.15103.pdf$$yOpenAccess
001021463 8564_ $$uhttps://juser.fz-juelich.de/record/1021463/files/2310.15103.gif?subformat=icon$$xicon$$yOpenAccess
001021463 8564_ $$uhttps://juser.fz-juelich.de/record/1021463/files/2310.15103.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021463 8564_ $$uhttps://juser.fz-juelich.de/record/1021463/files/2310.15103.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021463 8564_ $$uhttps://juser.fz-juelich.de/record/1021463/files/2310.15103.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021463 909CO $$ooai:juser.fz-juelich.de:1021463$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179462$$aForschungszentrum Jülich$$b0$$kFZJ
001021463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186675$$aForschungszentrum Jülich$$b1$$kFZJ
001021463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168366$$aForschungszentrum Jülich$$b4$$kFZJ
001021463 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001021463 9141_ $$y2023
001021463 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021463 920__ $$lyes
001021463 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001021463 980__ $$apreprint
001021463 980__ $$aVDB
001021463 980__ $$aUNRESTRICTED
001021463 980__ $$aI:(DE-Juel1)PGI-2-20110106
001021463 9801_ $$aFullTexts