001     1021463
005     20240226075349.0
024 7 _ |a arXiv:2310.15103
|2 arXiv
024 7 _ |a 10.34734/FZJ-2024-00756
|2 datacite_doi
037 _ _ |a FZJ-2024-00756
041 _ _ |a English
088 _ _ |a arXiv:2310.15103
|2 arXiv
100 1 _ |a Herrig, Tobias
|0 P:(DE-Juel1)179462
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Emulating moir\'e materials with quasiperiodic circuit quantum electrodynamics
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1705654086_18115
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 11 pages, 5 figures
520 _ _ |a Topological bandstructures interfering with moir\'e superstructures give rise to a plethora of emergent phenomena, which are pivotal for correlated insulating and superconducting states of twisttronics materials. While quasiperiodicity was up to now a notion mostly reserved for solid-state materials and cold atoms, we here demonstrate the capacity of conventional superconducting circuits to emulate moir\'e physics in charge space. With two examples, we show that Hofstadter's butterfly and the magic-angle effect, are directly visible in spectroscopic transport measurements. Importantly, these features survive in the presence of harmonic trapping potentials due to parasitic linear capacitances. Our proposed platform benefits from unprecedented tuning capabilities, and opens the door to probe incommensurate physics in virtually any spatial dimension.
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a Superconductivity (cond-mat.supr-con)
|2 Other
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Koliofoti, Christina
|0 P:(DE-Juel1)186675
|b 1
|u fzj
700 1 _ |a Pixley, Jedediah H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a König, Elio J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Riwar, Roman-Pascal
|0 P:(DE-Juel1)168366
|b 4
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021463/files/2310.15103.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021463/files/2310.15103.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021463/files/2310.15103.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021463/files/2310.15103.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021463/files/2310.15103.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021463
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168366
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21