001     1021584
005     20250204113755.0
024 7 _ |a 10.1103/PhysRevB.109.045138
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00849
|2 datacite_doi
024 7 _ |a WOS:001173687700004
|2 WOS
037 _ _ |a FZJ-2024-00849
082 _ _ |a 530
100 1 _ |a Burke, Declan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Robust Majorana bound states in magnetic topological insulator nanoribbons with fragile chiral edge channels
260 _ _ |a Woodbury, NY
|c 2024
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706010861_10617
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic topological insulators in the quantum anomalous Hall regime host ballistic chiral edge channels. When proximitized by an s-wave superconductor, these edge states offer the potential for realizing topological superconductivity and Majorana bound states without the detrimental effect of large externally applied magnetic fields on superconductivity. Realizing well-separated unpaired Majorana bound states requires magnetic topological insulator ribbons with a width of the order of the transverse extent of the edge state, however, which is expected to bring the required ribbon width down to around 100nm. In this regime, it is known to be extremely difficult to retain the ballistic nature of chiral edge channels and realize a quantized Hall conductance. In this paper, we study the impact of disorder in such magnetic topological insulator nanoribbons and compare the fragility of ballistic chiral edge channels with the stability of Majorana bound states when the ribbon is covered by a superconducting film. We find that the Majorana bound states exhibit greater robustness against disorder than the underlying chiral edge channels.
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Heffels, Dennis
|0 P:(DE-Juel1)178707
|b 1
|u fzj
700 1 _ |a Moors, Kristof
|0 P:(DE-Juel1)180184
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 3
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 4
|u fzj
700 1 _ |a Connolly, Malcolm R.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1103/PhysRevB.109.045138
|g Vol. 109, no. 4, p. 045138
|0 PERI:(DE-600)2844160-6
|n 4
|p 045138
|t Physical review / B
|v 109
|y 2024
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021584/files/PhysRevB.109.045138.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021584/files/PhysRevB.109.045138.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021584/files/PhysRevB.109.045138.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021584/files/PhysRevB.109.045138.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021584/files/PhysRevB.109.045138.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021584
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180184
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125588
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2022
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21