001021603 001__ 1021603
001021603 005__ 20240712113154.0
001021603 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00866
001021603 037__ $$aFZJ-2024-00866
001021603 041__ $$aEnglish
001021603 1001_ $$0P:(DE-Juel1)180992$$aDavis, Binny Alangadan$$b0$$eFirst author$$ufzj
001021603 1112_ $$aEuropean Materials Research Society Spring meeting 2023$$cStrasbourg$$d2023-05-29 - 2023-06-02$$gEMRS Spring meeting$$wFrance
001021603 245__ $$aMolecular Dynamics Simulations of the Structure and Dynamics at Catalyst-ionomer Interfaces
001021603 260__ $$c2023
001021603 3367_ $$033$$2EndNote$$aConference Paper
001021603 3367_ $$2DataCite$$aOther
001021603 3367_ $$2BibTeX$$aINPROCEEDINGS
001021603 3367_ $$2DRIVER$$aconferenceObject
001021603 3367_ $$2ORCID$$aLECTURE_SPEECH
001021603 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1706164774_27428$$xAfter Call
001021603 502__ $$cRWTH Aachen
001021603 520__ $$aThe structure and physicochemical properties of the interfacial region betweencatalyst surface and ionomer in the cathode catalyst layer exerts a significant impacton the electrode activity for the oxygen reduction reaction activity and hence theperformance of hydrogen fuel cells.1,2 Better understanding of the structure andproperties of these interfaces at molecular scales is thus crucial in order to determinefavorable local reaction conditions.3 With the aid of classical molecular dynamicssimulations, we investigate the structure and dynamics in an interface comprised of awater-filled nanopore that is bounded by a platinum metal slab on one and anionomer skin layer on the other side. The thickness of the water film depends oneffective interactions between the confining surfaces.4 The distribution of protons inthe interfacial region, as a key activity descriptor, is largely determined by thestructure and properties of the ionomer layer as well as the adsorption state and thesurface charge density at the metal-based catalyst5. We will present recent resultson the molecular structure, density distributions, correlation functions, and dynamicsof water molecules, hydroniums ions and other ionic species in the interfacial regionas a function of pore width, platinum surface oxide coverage, excess metal surfacecharge density and ionomer side chain density.References1. S. Woo, S. Lee, A. Z. Taning, T. Yang, S. Park, S. Yim, Current understanding ofcatalyst/ionomer interfacial structure and phenomena affecting the oxygen reductionreaction in cathode catalyst layers of proton exchange membrane fuel cells, CurrentOpinion in Electrochemistry, Vol. 21, 2020, 289-296.2. K. Kodama, R. Jinnouchi, A. Shinohara and Y. Morimoto, Strategies for designingideal Pt/Ionomer interfaces in polymer electrolyte fuel cells, R&D Review of ToyotaCRDL, Vol.49, No.4, 2018, 1-11.3. M.H. Eikerling, A.A Kulikovsky, Catalyst-layer structure and operation, in: PolymerElectrolyte Fuel Cells – Physical principles of materials and operation, BocaRaton/London/New York ,2014, 155-262.4. M. Kanduč, A. Schlaich, E. Schneck, R.R. Netz, Water-mediated interactionsbetween hydrophilic and hydrophobic surfaces, Langmuir 32, 2016, 8767-8782.5. Victor M. Fernández-Alvarez, K. Malek, M.H. Eikerling, A. Young, M. Dutta, and E.Kjeang, Molecular Dynamics Study of Reaction Conditions at Active Catalyst-Ionomer Interfaces in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 2022,169, 024506.
001021603 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001021603 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b1$$eCorresponding author$$ufzj
001021603 8564_ $$uhttps://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.pdf$$yOpenAccess
001021603 8564_ $$uhttps://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.gif?subformat=icon$$xicon$$yOpenAccess
001021603 8564_ $$uhttps://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021603 8564_ $$uhttps://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021603 8564_ $$uhttps://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021603 909CO $$ooai:juser.fz-juelich.de:1021603$$pdriver$$pVDB$$popen_access$$popenaire
001021603 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180992$$aForschungszentrum Jülich$$b0$$kFZJ
001021603 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b1$$kFZJ
001021603 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001021603 9141_ $$y2023
001021603 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021603 920__ $$lyes
001021603 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001021603 9801_ $$aFullTexts
001021603 980__ $$aconf
001021603 980__ $$aVDB
001021603 980__ $$aUNRESTRICTED
001021603 980__ $$aI:(DE-Juel1)IEK-13-20190226
001021603 981__ $$aI:(DE-Juel1)IET-3-20190226