001     1021603
005     20240712113154.0
024 7 _ |a 10.34734/FZJ-2024-00866
|2 datacite_doi
037 _ _ |a FZJ-2024-00866
041 _ _ |a English
100 1 _ |a Davis, Binny Alangadan
|0 P:(DE-Juel1)180992
|b 0
|e First author
|u fzj
111 2 _ |a European Materials Research Society Spring meeting 2023
|g EMRS Spring meeting
|c Strasbourg
|d 2023-05-29 - 2023-06-02
|w France
245 _ _ |a Molecular Dynamics Simulations of the Structure and Dynamics at Catalyst-ionomer Interfaces
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1706164774_27428
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a The structure and physicochemical properties of the interfacial region betweencatalyst surface and ionomer in the cathode catalyst layer exerts a significant impacton the electrode activity for the oxygen reduction reaction activity and hence theperformance of hydrogen fuel cells.1,2 Better understanding of the structure andproperties of these interfaces at molecular scales is thus crucial in order to determinefavorable local reaction conditions.3 With the aid of classical molecular dynamicssimulations, we investigate the structure and dynamics in an interface comprised of awater-filled nanopore that is bounded by a platinum metal slab on one and anionomer skin layer on the other side. The thickness of the water film depends oneffective interactions between the confining surfaces.4 The distribution of protons inthe interfacial region, as a key activity descriptor, is largely determined by thestructure and properties of the ionomer layer as well as the adsorption state and thesurface charge density at the metal-based catalyst5. We will present recent resultson the molecular structure, density distributions, correlation functions, and dynamicsof water molecules, hydroniums ions and other ionic species in the interfacial regionas a function of pore width, platinum surface oxide coverage, excess metal surfacecharge density and ionomer side chain density.References1. S. Woo, S. Lee, A. Z. Taning, T. Yang, S. Park, S. Yim, Current understanding ofcatalyst/ionomer interfacial structure and phenomena affecting the oxygen reductionreaction in cathode catalyst layers of proton exchange membrane fuel cells, CurrentOpinion in Electrochemistry, Vol. 21, 2020, 289-296.2. K. Kodama, R. Jinnouchi, A. Shinohara and Y. Morimoto, Strategies for designingideal Pt/Ionomer interfaces in polymer electrolyte fuel cells, R&D Review of ToyotaCRDL, Vol.49, No.4, 2018, 1-11.3. M.H. Eikerling, A.A Kulikovsky, Catalyst-layer structure and operation, in: PolymerElectrolyte Fuel Cells – Physical principles of materials and operation, BocaRaton/London/New York ,2014, 155-262.4. M. Kanduč, A. Schlaich, E. Schneck, R.R. Netz, Water-mediated interactionsbetween hydrophilic and hydrophobic surfaces, Langmuir 32, 2016, 8767-8782.5. Victor M. Fernández-Alvarez, K. Malek, M.H. Eikerling, A. Young, M. Dutta, and E.Kjeang, Molecular Dynamics Study of Reaction Conditions at Active Catalyst-Ionomer Interfaces in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 2022,169, 024506.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
700 1 _ |a Eikerling, Michael
|0 P:(DE-Juel1)178034
|b 1
|e Corresponding author
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021603/files/May_29_2023_EMRS_Spring_Meeting_Strasbourg_Binny_Davis.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021603
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180992
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178034
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21