001021622 001__ 1021622
001021622 005__ 20240226075359.0
001021622 0247_ $$2doi$$a10.1016/j.proci.2022.07.254
001021622 0247_ $$2ISSN$$a1540-7489
001021622 0247_ $$2ISSN$$a1873-2704
001021622 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00885
001021622 0247_ $$2WOS$$aWOS:001012150200001
001021622 037__ $$aFZJ-2024-00885
001021622 082__ $$a660
001021622 1001_ $$0P:(DE-Juel1)192255$$aBode, Mathis$$b0$$eCorresponding author$$ufzj
001021622 245__ $$aApplying physics-informed enhanced super-resolution generative adversarial networks to turbulent premixed combustion and engine-like flame kernel direct numerical simulation data
001021622 260__ $$aNew York, NY [u.a.]$$bElsevier ScienceDirect$$c2023
001021622 3367_ $$2DRIVER$$aarticle
001021622 3367_ $$2DataCite$$aOutput Types/Journal article
001021622 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706616249_19016
001021622 3367_ $$2BibTeX$$aARTICLE
001021622 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021622 3367_ $$00$$2EndNote$$aJournal Article
001021622 520__ $$aModels for finite-rate-chemistry in underresolved flows still pose one of the main challenges for predictive simulations of complex configurations. The problem gets even more challenging if turbulence is involved. This work advances the recently developed PIESRGAN modeling approach to turbulent premixed combustion. For that, the physical information processed by the network and considered in the loss function are adjusted, the training process is smoothed, and especially effects from density changes are considered. The resulting model provides good results for a priori and a posteriori tests on direct numerical simulation data of a fully turbulent premixed flame kernel. The limits of the modeling approach are discussed. Finally, the model is employed to compute further realizations of the premixed flame kernel, which are analyzed with a scale-sensitive framework regarding their cycle-to-cycle variations. The work shows that the data-driven PIESRGAN subfilter model can very accurately reproduce direct numerical simulation data on much coarser meshes, which is hardly possible with classical subfilter models, and enables studying statistical processes more efficiently due to the smaller computing cost.
001021622 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001021622 536__ $$0G:(EU-Grant)952181$$aCoEC - Center of Excellence in Combustion (952181)$$c952181$$fH2020-INFRAEDI-2019-1$$x1
001021622 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021622 7001_ $$0P:(DE-HGF)0$$aGauding, Michael$$b1
001021622 7001_ $$0P:(DE-HGF)0$$aGoeb, Dominik$$b2
001021622 7001_ $$0P:(DE-HGF)0$$aFalkenstein, Tobias$$b3
001021622 7001_ $$0P:(DE-HGF)0$$aPitsch, Heinz$$b4
001021622 773__ $$0PERI:(DE-600)2197968-6$$a10.1016/j.proci.2022.07.254$$gVol. 39, no. 4, p. 5289 - 5298$$n4$$p 5289-5298$$tProceedings of the Combustion Institute$$v39$$x1540-7489$$y2023
001021622 8564_ $$uhttps://juser.fz-juelich.de/record/1021622/files/FZJ-2024-00885.pdf$$yOpenAccess
001021622 8564_ $$uhttps://juser.fz-juelich.de/record/1021622/files/FZJ-2024-00885.gif?subformat=icon$$xicon$$yOpenAccess
001021622 8564_ $$uhttps://juser.fz-juelich.de/record/1021622/files/FZJ-2024-00885.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021622 8564_ $$uhttps://juser.fz-juelich.de/record/1021622/files/FZJ-2024-00885.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021622 8564_ $$uhttps://juser.fz-juelich.de/record/1021622/files/FZJ-2024-00885.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021622 909CO $$ooai:juser.fz-juelich.de:1021622$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001021622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192255$$aForschungszentrum Jülich$$b0$$kFZJ
001021622 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001021622 9141_ $$y2023
001021622 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001021622 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001021622 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001021622 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP COMBUST INST : 2022$$d2023-08-23
001021622 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001021622 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
001021622 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021622 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001021622 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001021622 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001021622 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001021622 980__ $$ajournal
001021622 980__ $$aVDB
001021622 980__ $$aUNRESTRICTED
001021622 980__ $$aI:(DE-Juel1)JSC-20090406
001021622 9801_ $$aFullTexts