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Abstract 

Models for finite-rate-chemistry in underresolved flows still pose one of the main challenges for predictive 
simulations of complex configurations. The problem gets even more challenging if turbulence is involved. This 
work advances the recently developed PIESRGAN modeling approach to turbulent premixed combustion. 
For that, the physical information processed by the network and considered in the loss function are adjusted, 
the training process is smoothed, and especially effects from density changes are considered. The resulting 
model provides good results for a priori and a posteriori tests on direct numerical simulation data of a fully 
turbulent premixed flame kernel. The limits of the modeling approach are discussed. Finally, the model is em- 
ployed to compute further realizations of the premixed flame kernel, which are analyzed with a scale-sensitive 
framework regarding their cycle-to-cycle variations. The work shows that the data-driven PIESRGAN sub- 
filter model can very accurately reproduce direct numerical simulation data on much coarser meshes, which 

is hardly possible with classical subfilter models, and enables studying statistical processes more efficiently 
due to the smaller computing cost. 
© 2022 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute. 
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1. Introduction 

The availability of larger and larger, often 

extensively labeled datasets, either from large scale 
experiments, social media interactions, or simula- 
tions, has massively boosted the development of 
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lgorithms, software, and hardware to efficiently
se data. For example, modern graphics processing
nits (GPUs) feature more than 100 TeraFLOPS
P16 performance, and state-of-the-art algorithms
nd implementations can almost fully employ this
otential. As a consequence, data-driven methods
ave evolved as an important tool in many areas,
nabling new use cases not possible a few years
go [1–3] . They also emerged as useful tools, such
s machine learning (ML) and deep learning (DL),
n fluid dynamics and reactive flows applications,
.g., for replacing simpler algebraic closure models
n Reynolds-averaged Navier–Stokes (RANS)
imulations and large-eddy simulations (LESs)
4] and for efficiently storing complex data [5,6] . 

Technically, the ML and DL approaches rely on
ontinuously updating network weights in a data-
ed training process to minimize loss functions. A
articular combination of two DL networks, gen-
rator and discriminator, coupled by an adversarial
oss term, is called a generative adversarial network
GAN) [7] . GANs aim to estimate the unknown
robability density of observed data without an
xplicitly provided data likelihood function. These
enerative models implicitly learn by requiring ac-
ess to only data samples from the unknown distri-
ution. Therefore, the GANs learning of unknown
ata probability distribution is unsupervised and
oes not need any labels necessary in supervised

earning scenarios. Finally, the trained generator
etwork is used for prediction. 

Bode et al. [8–11] developed physics-informed
nhanced super-resolution generative adversarial
etworks (PIESRGANs) by advancing ESRGANs
enhanced super-resolution GANs) [12] to han-
le 3-D physical data and add physical informa-
ion in the training process. Furthermore, they per-
ormed an ablation study with turbulent data to
nd a suitable network architecture for physical
roblems. The main idea of their model algorithm

s to use high-fidelity data (“H”), e.g., from a fully
esolved direct numerical simulation (DNS), and a
orresponding filter operation to get pairs of high-
delity data and filtered data (“F”). These pairs
re used to train PIESRGAN to recover the high-
delity data as accurately as possible based on the
ltered data only. The generated data are called
econstructed data (“R”). Bode [13] recently ex-
ended this framework to laminar reactive flows
ith finite-rate-chemistry modeling by suggesting

o solve additional transport equations on the re-
onstructed data and introducing an integrated
ookup table approach to significantly reduce the
ime to the solution for parametric variations and
he computational cost. They demonstrated the us-
bility of this framework for a laminar lean pre-
ixed combustion case and received good results

or emission prediction. However, Bode [13] did not
se PIESRGAN on turbulent finite-rate-chemistry
calar fields. To fully focus on chemistry, they did
ot even directly train the network with the veloc-
ity fields. More details including further relevant lit-
erature can be found in previous works [10,13–15] .
The PIESRGAN is extended to turbulent finite-
rate-chemistry data in this work for the first time
based on the example of an engine-like premixed
flame kernel. 

Cycle-to-cycle variations (CCVs) in spark-
ignition (SI) engines are still not fully understood,
as many different in-cylinder processes are in-
volved, interact complexly, and include a large
range of spatial and temporal scales. However,
CCVs are known to be affected by early flame ker-
nel development [16,17] ; faster early flame kernel
growth correlates with faster combustion cycles. 3-
D DNSs of early flame kernel development are pos-
sible and very well-suited to derive more insight
into the complex phenomena involved [18–22] . One
problem though are the costs of such simulations
if they are run with finite-rate-chemistry and suf-
ficiently high turbulence levels. As turbulence is
a stochastic phenomenon, multiple realizations of 
flame kernels need to be run to accurately repro-
duce CCV behavior. Therefore, this is a very ap-
pealing application for complex data-driven model
development such as PIESRGAN. Particularly, the
reconstruction approach allows direct evaluation
of the filtered density function (FDF) instead of 
relying on filtered-probability-functions, which are
usually used in conventional models. Additionally,
this approach enables the consideration of stochas-
tic deviations of the FDF, which have not received
much attention in the engine context yet. Accurate
simulation data exist for training on one hand, but
on the other, the cost per simulation needs reduc-
tion to create a statistically representative database
for further analysis. 

In this work, an iso-octane/air premixed flame
kernel configuration, representing the underlying
physical processes in real engines described above,
is chosen as a first target case for the development
of PIERSGAN for reactive turbulent finite-rate-
chemistry flows. 

2. Case setup of a turbulent premixed flame kernel 

Falkenstein et al. [18–20] computed a database
of different iso-octane/air flame kernels, including
fully turbulent kernels and planar cases, as well as
cases with unity Lewis number and constant Lewis
numbers. They used a uniform mesh with 960 grid
points per direction to discretize a periodic box,
and a reaction mechanism with 26 species. The box
was initialized with homogeneous isotropic turbu-
lence (HIT), which decays over time and mimics
the conditions in SI engines. The unburnt temper-
ature is T u = 600 K , the initial pressure p 0 = 6 bar ,
and the air-fuel equivalence ratio φ = 1 . 0 . Conse-
quently, the cases were designed to lie in the thin
reaction zone combustion regime. All were com-
puted in the low-Mach limit using the Curtiss–
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Fig. 1. Visualization of 2-D slices of ζ , ˙ ω ζ , and u 1 
(left to right) for fiv e different increasing time steps (top 
to bottom: 0.60 ×10 −4 s, 1.35 ×10 −4 s, 2.10 ×10 −4 s, 
2.85 ×10 −4 s, 3.60 ×10 −4 s) for the fully turbulent flame 
kernel with unity Lewis number. Note that the flame ker- 
nel does not break into parts at the latest time shown. 
A coherent flame kernel topology was maintained at all 
times. 
Hirschfelder approximation [23] for diffusive scalar
transport and including the Soret effect. 

To simplify the analysis, Falkenstein
et al. [18] introduced a simplified reaction progress
variable ζ with the thermal diffusion coefficient
D th as the diffusion coefficient reading 

∂ t ( ρζ ) + ∇ · ( ρu ζ ) = ∇ · ( ρD th ∇ ( ζ ) ) + ˙ ω ζ (1)

with bold notation for vectors, ∇ as del operator,
and ∂ t as time derivative. ρ is the density, u the ve-
locity vector, and ˙ ω ζ the chemical source term of 
the simplified reaction progress variable, which is
defined as 

˙ ω ζ = ˙ ω H 2 + ˙ ω H 2 O 

+ ˙ ω CO 

+ ˙ ω CO 2 . (2)

To better understand the setup and its temporal
development, 2-D slices through the center of the
box are presented in Fig. 1 for ζ , ˙ ω ζ , and a velocity
component u 1 for the case with unity Lewis num-
bers at three different time steps. As anticipated,
over time, the kernel grows as shown by the larger
area with higher ζ -values and wrinkles more. Most
of the reactions occur in the thin reaction zone. The
turbulent structures indicated by the velocity com-
ponent grow with time, implying a decrease of tur-
bulent intensity in the box. Note that most of the
analysis of this case in this work will be performed
on later time steps than are presented here. These
typically offer better statistical convergence due to
a larger surface area. 

3. PIESRGAN for turbulent premixed combustion 

The PIESRGAN approach for finite rate chem-
istry by Bode [13] , except for the velocity and turbu-
lence treatment, was mainly followed in this work.
The turbulent case considered here is much more
challenging, as the chaotic nature of turbulence
makes the training more difficult and the data much
bigger, requiring more advanced computing ap-
proaches. Comparisons are possible only as ensem-
ble statistics, which complicates the analysis. It in-
cludes the reconstruction of fields, a consecutive so-
lution step of the resolved transport equations on
the finer mesh, the evaluation of the terms unclosed
in the filtered equations on the coarser mesh, and
the advancement of the filtered equations. This al-
gorithm is described in detail in Bode [13] . More-
over, following their suggestion, the species are split
into primary and secondary in this work. Trans-
port equations are solved only for the primary
species, while the secondary species are advanced
by a chemtable-like lookup. One important reason
is the reduced cost for the PIESRGAN with split
species, which is thus called reduced PIESRGAN
and denoted as PIESRGAN S . A PIESRGAN with-
out secondary species is called a full PIESRGAN.
Details about the different aspects of PIESRGAN
and ways to deal with the turbulence are offered in
the next subsections. 
3.1. Loss function 

The loss function is the target function that is 
minimized by training the GAN. Bode [13] decou- 
pled velocity and scalar fields to train their network 

for laminar partially premixed combustion. This 
approach is not possible here, as the fluctuations in 

the velocity field are expected to significantly im- 
pact all phenomena in the process. Thus, the loss 
function by Bode [13] needs to be complemented 

by a continuity loss term. However, this term can- 
not be similar to the corresponding term defined by 
Bode et al. [10] , relying on a divergence-free con- 
dition for incompressible flows, which is obviously 
violated here. Consequently, the loss function for 
PIESRGAN for turbulent premixed combustion is 
chosen as 

L = β1 L adversarial + β2 L pixel + β3 L gradient 

+ β4 L continuity + β5 L species , (3) 

where β1 , β2 , β3 , β4 , and β5 are scalar coefficients 
weighting the different loss term contributions; in 
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his work, these coefficients were always equally
caled such that the sum of all non-zero weight-
ng coefficients equalled one. Note that all loss
erms are non-dimensional, as all operators and in-
ut fields used are non-dimensionalized. The veloc-

ty field was zero mean-centered and rescaled with
ts root-mean-square deviation (RMSD) value. All
oss terms are evaluated over all the cells of the do-

ain. L adversarial is the discriminator/generator rela-
ivistic adversarial loss [1] , which mainly communi-
ates the discriminator feedback to the generator.
he pixel loss L pixel and the gradient loss L gradient
re defined as the mean-squared error (MSE) of 
he quantity itself and of the gradient of the quan-
ity, respectively [8] . If the MSE operator is applied
n tensors, including vectors such as the velocity, it

s applied to all components separately. Afterward,
he resulting tensor is mapped into a scalar using
he L 1 -norm. L continuity is the physics-informed con-
inuity loss, enforcing physically plausible solutions
f the reconstructed flow field in which a compress-

ble continuity equation should be fulfilled, ∂ t ( ρ ) +
 · ( ρu ) = 0 . This again contrasts the original loss

unction by Bode et al. [10] for HIT in which any di-
atation and expansion effects were neglected. This
ntroduces an additional complexity to the train-
ng process as two consecutive time steps were used
o evaluate the temporal derivative. To increase the
umerical accuracy, a centered derivative for time
as employed, technically introducing an offset be-

ween the current filtered data and DNS data dur-
ng the training process, as training has to wait for
he availability of the next DNS data in time. L species
s the loss term ensuring that the sum of all mass
ractions in the domain equals one. 

The physics-informed loss terms, L continuity and
 species , were found essential for using PIESRGAN
s the subfilter model. In the trained network, these
erms must be very close to zero to prevent the a
osteriori simulation from blowing up. 

.2. Architecture 

The training process and architecture of PIES-
GAN is shown in Fig. 2 . Both network parts,

he generator and the discriminator, heavily utilize
-D CNN layers (Conv3D) [24] , which are acti-
ated by leaky rectified linear unit (LeakyReLU)
ayers. The central component of the generator is
he residual in residual dense block (RRDB). It
ontains residual dense blocks (RDBs) with skip-
onnections, which are extended residual blocks
RBs) with dense connections inside. A residual
caling factor βRSF is used to prevent instabilities in
he forward and backward propagation. The gen-
rator has about 80 layers in total. On the other
and, the discriminator has only about 28 layers.
owever, it features layers for batch normaliza-

ion (BN) as well as dropout with dropout factor
dropout . Its final layer is a dense layer (Dense). The
raining is with pairs of data. The high-fidelity data
(“H”) are filtered in a prestep to receive filtered data
(“F”), which serve as input to the network. The
high-fidelity data are considered to evaluate the loss
function terms. 

3.3. Species splitting 

For the turbulent premixed flame kernel appli-
cation case in this work, a full PIESRGAN was
trained first, which was then reduced by introduc-
ing primary and secondary species. Primary species
are reconstructed on a fine mesh, and an unfiltered
transport equation is solved to update the recon-
structed field. The source term is evaluated on the
fine mesh. On the other hand, secondary species are
only reconstructed, including the source term. The
accuracy is increased by shifting the primary and
secondary species by a half-time step. The reduc-
tion happened using AutoML techniques [25] . Sim-
ply put, species are systematically moved from pri-
mary to secondary, the effect is evaluated, and an
optimal reduced PIESRGAN found. 

In contrast to the findings by Bode [13] , C 8 H 18 ,
OH , H 2 , CO , CO 2 , and H 2 O were found to be
the most suitable selection of primary species here.
This is especially interesting for H 2 , which was a
secondary species for Bode [13] . 

3.4. Algorithm 

PIESRGAN is used to reconstruct “fully-
resolved” data from filtered data. Therefore, the
outputs of the GAN are refined data fields used
consecutively to evaluate source terms and advance
the filtered equations. The LES subfilter algorithm
for the primary species starts with the LES solution
without secondary species �n 

LES at time step n and
consists of repeating the following steps: 

1. Use the PIESRGAN to reconstruct �n 
R 

from
�n 

LES . 
2. Use �n 

R 

to update the primary species fields
of � to �

n ;update 
R 

by evaluating the source
terms and solving the unfiltered scalar equa-
tions on the mesh of �n 

R 

. 
3. Use �n ;update 

R 

to estimate the unclosed terms
	n 

LES in the LES equations of � by evaluating
the local terms with �

n ;update 
R 

and applying a
filter operator. 

4. Use 	n 
LES and �n 

LES to advance the LES equa-
tions of � to �n +1 

LES . 

For the secondary species and velocities, the sec-
ond step is skipped. Any source terms are inte-
grated in the network. 

3.5. Implementation and training details 

The training process is one of the main chal-
lenges for GANs. Depending on how it is done, e.g.,
how the network is initialized and how the learning
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Fig. 2. Sketch of PIESRGAN. “H” denotes high-fidelity data, such as DNS data, “F” are corresponding filtered data, 
and “R” are the reconstructed data. The components are as follows: Conv3D - 3D Convolutional Layer, LeakyReLU 

- Activation Function, DB - Dense Block, RDB - Residual Dense Block, RRDB - Residual in Residual Dense Block, 
βRSF - Residual Scaling Factor, BN - Batch Normalization, Dense - Fully Connected Layer, Dropout - Regularization 
Component, and βdropout - Dropout Factor. Image from Bode et al. [10] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Visualization of DNS, filtered, and reconstructed 
fields for the unity Lewis number case employing PIESR- 
GAN S . Results for the simplified reaction progress vari- 
able, the C 8 H 18 mass fraction, the OH mass fraction, 
the CH 2 O mass fraction, and a velocity component are 
shown. Note that the images show the same time step as 
the last row in Fig. 1 but are zoomed in. Furthermore, all 
images show 2-D slices of the full 3-D data. 
rate is varied, the training might lead to a converg-
ing result or a diverging system. In image applica-
tions, such as ESRGAN, a perceptual loss based on
the VGG-feature space, which is pre-trained with,
e.g., the ImageNet dataset, is often used to ini-
tialize the network coefficients and smoothen the
training process. A similar approach was followed
in this work. The fully trained network by Bode
et al. [10] based on decaying HIT was used as a
starting network to accelerate the training process. 

The training was performed with multiple fil-
ter widths, using box filters for simplicity. The filter
stencil width varied from 5 to 15 cells per direction.
Furthermore, the training was performed on the fly
to efficiently use compute nodes with GPUs, i.e.,
the Falkenstein et al. [18] configuration was rerun,
and the obtained data was used for training with-
out storing it permanently. This also minimized the
probability of overfitting. Moreover, this always al-
lowed comparison between training and test data.
Two newly run DNSs were used for on-the-fly train-
ing and the accuracy of the prediction compared to
the original DNS data by Falkenstein et al. [18] . 

The premixed flame kernel simulations were all
run on a uniform mesh. Therefore, effects of non-
uniform meshes were not further considered in this
work. However, the presented method is not limited
to uniform meshes. Bode [26] showed in the context
of non-premixed flames that training with multiple
filter widths can compensate mesh effects. 

The numerical solver and network parameters
were chosen by Bode et al. [10] , equally weighting
β4 and β5 . 

3.6. A priori testing 

The accuracy of the PIESRGAN S model for
turbulent premixed combustion super-resolution
is first evaluated based on an a priori test, and
the results are shown in Fig. 3 for three species,
a velocity component, and the simplified reaction



5294 M. Bode, M. Gauding, D. Goeb et al. / Proceedings of the Combustion Institute 39 (2023) 5289–5298 

Fig. 4. Temporal evolution of the averaged turbulent ki- 
netic energy in the unburnt mixture 〈 k u 〉 , the surface den- 
sity 
, and the characteristic length scale L 
 for the DNS 
and PIESRGAN S for the unity Lewis number case. 
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Fig. 5. FDFs F for DNS data and PIESRGAN S data in 
fiv e different locations with the same filtered simplified re- 
action progress variable value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rogress variable. The reconstruction results of 
IESRGAN S are denoted with “RS”. The a pri-
ri test used the maximum filter stencil width of 
5 cells per direction, while the ratio of cell size
nd Kolmogorov length on the fine mesh is about
.85 at the considered time step. The agreement be-
ween the DNS data and the reconstructed data is
ery good. The filtered data are less sharp as they
eature less small-scale structures, and it can be ex-
ected that running the simulation directly on such
 coarse grid will result in unsatisfactory results.
ote that while C 8 H 18 and OH are primary species,
H 2 O is a secondary species and also shows good
ccuracy. 

.7. A posteriori testing 

To assess the accuracy of the trained PIESR-
AN S model, an a posteriori test has been con-

ucted. For that, and to avoid different initial con-
itions, one of the already developed solutions of 
he DNS case with unity Lewis numbers, which
as not used for training, was advanced in time
y an LES employing the PIESRGAN S model. A
onstant filter width of fiv e cells per direction was
hosen, it was maintained that all gradients were
umerically sufficiently resolved in the transporta-
ion step on the coarse mesh, and multiple domain-
veraged quantities (denoted by 〈 ·〉 ) were evaluated.
ote that even for this relatively weak filtering, sim-

lations without model were not running stably. In
ig. 4 , the evolutions of the average turbulent ki-
etic energy in the unburnt mixture 〈 k u 〉 , the sur-
ace density 
, and the characteristic length scale
 
 (both defined in the application section) are

hown. Satisfactory agreement between DNS and
IESRGAN S -LES can be observed. 

It can be concluded that the PIERSGAN S 
odel can produce LES results that very closely
imic DNS results but on a much coarser grid. Par-
ticularly, only few DNSs, covering the parameter-
bounding box, are required to train the initial net-
work, and subsequent realizations can be generated
using the much cheaper PIESRGAN S -LES. 

3.8. FDF analysis 

In addition to the previously shown a poste-
riori test, another a posteriori test is performed.
The target time step and model are the same, but
a later start time is chosen, and the run time is only
one fifth of the previous a posteriori test. The fil-
ter width was increased to eleven cells per direc-
tion to enable statistically better computation of 
FDFs (denoted F) with respect to the simplified
reaction progress variable. FDFs are typically re-
placed by presumed PDFs in classical LES mod-
els. For example, a presumed PDF constructed by
the filtered simplified reaction progress variable can
be used to model the subfilter distribution, e.g.,
for evaluating the chemical source term. A conse-
quence is that cells featuring the same value for the
filtered simplified reaction progress variable (and
potentially additional parameters) always have the
same subfilter distribution, i.e., cannot account for
stochastic deviations. In Fig. 5 , FDFs for DNS
data and PIESRGAN S data in fiv e different loca-
tions are compared. All selected locations feature
the same filtered simplified reaction progress vari-
able, which was evaluated as the progress variable
value with maximum heat release. Deviations be-
tween the FDFs of different locations are obvious.
This is interesting, and its impact on CCVs should
be analyzed more systematically in the future. An-
other important result is that the agreement of the
FDFs computed on the DNS data and the PIES-
RGAN S data is good. This result again empha-
sizes the accuracy of the PIESRGAN S model and
reveals the advantages of the field reconstruction
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compared to simplified models based on presumed
PDF closures. 

3.9. Full versus reduced PIESRGAN 

The results so far obtained in this work but
also the laminar results by Bode [13] provide the
impression that the full and the reduced PIESR-
GAN approaches offer equally good results most
of the time. This result is obviously not the case
for all possible variations. For example, a reduced
PIESRGAN trained with the unity Lewis numbers
flame kernel case clearly overpredicts the evolution
of the flame kernel case with constant, but non-
unity Lewis numbers. Due to the learnt evolution
of the secondary species on the reconstructed grid,
the effect of non-unity Lewis numbers resulting in
smaller source terms is not sufficiently considered.
This effect can be seen even though a Lewis num-
ber effect is indirectly fed into the network through
the primary species, for which the transport equa-
tions on the fine mesh include the Lewis number.
The results for the full PIESRGAN model are much
better, but still not perfect in this case. Overall, the
PIERSGAN S approach to utilize direct network
lookup for secondary species seems to lead to very
good intra-case capabilities of the network and is
computationally advantageous. However, the ap-
proach is more case-specific than a full model solv-
ing transport equations for all species. 

4. Application 

Overall, a priori and a posteriori results pro-
vide strong confidence that the developed PIESR-
GAN S -LES model is able to accurately and quickly
compute turbulent flame kernel realizations, even
on smaller computing clusters as long as GPUs are
available. Therefore, in this section, six new inde-
pendent realizations of early flame kernel develop-
ment with an 8-times lower resolution per direction
than the original DNS were computed, and their
CCVs are analyzed in this section. It is not possi-
ble to easily predict the speed-up due to different
clusters used featuring CPUs and GPUs as well as
partly strongly varying compute cost per time step.
However, all six PIESRGAN S -LESs together were
slightly cheaper in terms of mixed FLOPS than
one fully resolved DNS realization. Generally, the
speed-up increases for cases with even more species
and is further discussed by Bode [27] . The six flame
kernel realizations featuring different initial loca-
tions in the domain and therefore different turbu-
lence interactions, are used in this section to gain
more insight into early flame kernel development
from a physical and modeling point of view. Obvi-
ously, six additional kernel realizations are not suf-
ficient for a full statistical analysis to understand
the role of early flame kernel development in CCVs.
However, due to brevity and the modeling focus
of this paper, this number should be sufficient to 

demonstrate the usage of the developed model in 

a scale-sensitive analysis framework. Therefore, the 
discussion is also only limited to a single time step, 
( t = 0 . 33 ms ) even though the simulations were run 

over time. The analysis is performed on the recon- 
structed fields, featuring the same resolution as the 
original DNS. 

Assuming the laminar flamelet concept, the ge- 
ometrical properties of a flame kernel are required 

to accurately predict its macroscopic features, such 

as flame speed and heat release. A key quantity is 
the flame surface density 
, which determines the 
reaction rate [28] . Due to the interaction with the 
turbulent flow, the flame surface exhibits a wide 
range of different scales, extending from the inte- 
gral scales, which contain information about ini- 
tial and boundary conditions, down to the Kol- 
mogorov length scale, which is the dissipative cut- 
off scale for which a quasi-universal statistical the- 
ory exists [29] . 

Given the progress variable ζ that varies in space 
x , a threshold ζ0 can be used to define an interface 
that separates the regions where ζ ( x ) > ζ0 from the 
regions where ζ ( x ) < ζ0 . Consequently, for a given 

threshold ζ0 , a phase indicator function �( x , t) can 

be defined as �( x , t) = H(ζ ( x , t) − ζ0 ) , with H be- 
ing the Heaviside step function. To proceed, the 
structure function of the phase indicator function, 
i.e., 

〈 (δ�) 2 〉 ( r , t) = 〈 (�( x + r , t) − �( x , t)) 2 〉 (4) 

with r as spatial distance vector, is introduced and 

finally computed by taking an angular average to 

facilitate a scale sensitive analysis of the geometry 
of the surface of the flame kernel. 

The connection between the indicator struc- 
ture function and the morphology of the flame 
kernel surface can be demonstrated by taking 
the small-scale and large-scale limits. Kirste and 

Parod [30] proved that for interfaces of class C 2 , the 
small-scale limit of Eq. (4) is given by 

lim 

r → 0 
〈 (δ�) 2 〉 = 


r 
2 

+ O(r 2 ) . (5) 

Here, the surface density is given by 


 = 〈 |∇�| 〉 (6) 

and quantifies the area of the iso-scalar surface of 
the flame divided by the volume V . Note that the 
computation of the surface density by Eq. (4) is 
computationally very efficient and does not require 
the tessellation of the iso-surface or the defini- 
tion of a level set function. In the large-scale limit, 
〈 (δ�) 2 〉 tends to 

lim 

r →∞ 

〈 (δ�) 2 〉 = 2 〈 �〉 (1 − 〈 �〉 ) , (7) 

and is hence related to the volume 〈 �〉 enclosed by 
the iso-surface. If a sufficient scale separation ex- 
ists, Eq. (4) also provides information about the 
fractal dimension of the flame kernel surface [31] . 
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Fig. 6. Plot of the non-normalized phase indicator struc- 
ture function for six realizations of the unity Lewis num- 
ber case. Additionally, the non-normalized phase indi- 
cator structure function evaluated on the DNS data is 
shown (solid blue line). 
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Fig. 7. Plot of the normalized phase indicator structure 
function for six realizations of the unity Lewis number 
case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

urthermore, expressing the surface density by a
haracteristic length scale is customary 

 
 = 

4 〈 �〉 (1 − 〈 �〉 ) 



, (8)

hich is related to the wrinkling scale L 

∗

 =

(4
max ) −1 of premixed flames, which falls between
he Taylor microscale and the Kolmogorov scale as
ecently demonstrated by Kulkarni et al. [32] . 

The discussed phase indicator structure func-
ion is an easily computable method to evaluate im-
ortant multi-scale geometrical aspects of a flame
ernel and to understand sensitivities for CCVs.
or example, the surface density values evaluated

rom the six new realizations at the considered
ime step are 138.7 m 

−1 , 141.7 m 

−1 , 127.7 m 

−1 ,
34.0 m 

−1 , 134.9 m 

−1 , and 117.7 m 

−1 . The four
argest values seem to be reasonably close together
nd the “standard” evolution, while the two small-
st values deviate. Both deviating cases are slower
n their evolution compared to the others, and
hus, the smaller surface densities represent delayed
ame kernels. This fact is also reflected in Fig. 6 ,
hich shows the non-normalized phase indicator

tructure function in log-log presentation. Addi-
ionally, Fig. 6 shows the phase indicator structure
unction evaluated with the DNS data. It nicely
ligns itself with the PIESRGAN S -LES computed
ealizations. 

From a modeling perspective, knowing the char-
cteristic scales of the phase indicator structure
unction leading to self-similarity is important. Ac-
ording to Eqs. (7) and (8) , L 
 and 2 〈 �〉 (1 − 〈 �〉 )
re suitable candidates for scaling the phase indi-
ator structure function. The result is depicted in
ig. 7 , which features excellent collapse at the small
nd large scales. At the intermediate scales, the in-
uence of CCVs is clearly visible as variations of 
he flame kernel morphology. 
5. Conclusions 

This work shows the application of 
PIESRGAN-based modeling to turbulent finite-
rate-chemistry flows for the first time. The model
for laminar finite-rate-chemistry flows described
in Bode [13] is extended with special focus on the
correct consideration of the fluctuating velocity
fields and the density change, causing an expansion
and deviating the turbulence from HIT. Both the
full and the reduced PIESRGAN models present
good results in a priori and a posteriori tests on
the DNS data of a fully turbulent premixed flame
kernel case under engine conditions. The limits of 
the reduced model were discussed. The differences
between FDFs evaluated from the DNS or the
reconstructed field from PIERSGAN and typical
PDF closures were highlighted. 

The data-driven model allows to compute more
realizations of the fully turbulent premixed flame
kernel for significantly lower cost. Six new realiza-
tions were computed for the unity Lewis number
case for the cost of roughly one additional DNS
realization and analyzed with respect to their CCV
by means of a scale-sensitive framework. The level
of variation was evaluated, and it was, furthermore,
shown that the structure functions collapse suffi-
ciently with appropriate scaling. This is an impor-
tant conclusion from a modeling point of view as it
helps develop simpler models connecting the flame
surface density and heat release. 

Overall, this paper demonstrates that LES
based on PIESRGAN subfilter modeling can very
accurately predict complex turbulent finite-rate-
chemistry flows. PIESRGAN probably outper-
forms all classical LES models. 
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