001021623 001__ 1021623
001021623 005__ 20250204113755.0
001021623 0247_ $$2doi$$a10.1016/j.compfluid.2023.106150
001021623 0247_ $$2ISSN$$a0045-7930
001021623 0247_ $$2ISSN$$a1879-0747
001021623 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00886
001021623 0247_ $$2WOS$$aWOS:001164689600001
001021623 037__ $$aFZJ-2024-00886
001021623 082__ $$a004
001021623 1001_ $$0P:(DE-Juel1)192255$$aBode, Mathis$$b0$$eCorresponding author
001021623 245__ $$aAcceleration of complex high-performance computing ensemble simulations with super-resolution-based subfilter models
001021623 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001021623 3367_ $$2DRIVER$$aarticle
001021623 3367_ $$2DataCite$$aOutput Types/Journal article
001021623 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706699533_5586
001021623 3367_ $$2BibTeX$$aARTICLE
001021623 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021623 3367_ $$00$$2EndNote$$aJournal Article
001021623 520__ $$aDirect numerical simulation (DNS) of fluid flow problems has been one of the most important applications of high-performance computing (HPC) in the last decades. For example, turbulent flows require the simultaneous resolution of multiple spatial and temporal scales as all scales are coupled, resulting in very large simulations with enormous degrees of freedom. Another example is reactive flows, which typically result in a large system of coupled differential equations and multiple transport equations that must be solved simultaneously. In addition, many flows exhibit chaotic behavior, meaning that only statistical ensembles of results can be compared, further increasing the computational time. In this work, a combined HPC/deep learning (DL) workflow is presented that drastically reduces the overall computational time required while still providing acceptable accuracy.Traditionally, all the simulations required to compute ensemble statistics are performed using expensive DNS. The idea behind the combined HPC/DL workflow is to reduce the number of expensive DNSs by developing a DL-assisted large-eddy simulation (LES) approach that uses a sophisticated DL network, called PIESRGAN, as a subfilter model for all unclosed terms and is accurate enough to substitute DNSs. The remaining DNSs are thus used in two ways: first, as data contributing to the ensemble statistics, and second, as data used to train the DL network. It was found that in many cases two remaining DNSs are sufficient for training the LES approach. The cost of the DL-supported LES is usually more than one order of magnitude cheaper than the DNS, which drastically speeds up the workflow, even considering the overhead for training the DL network.
001021623 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001021623 536__ $$0G:(EU-Grant)952181$$aCoEC - Center of Excellence in Combustion (952181)$$c952181$$fH2020-INFRAEDI-2019-1$$x1
001021623 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021623 7001_ $$0P:(DE-Juel1)168541$$aGöbbert, Jens Henrik$$b1$$ufzj
001021623 773__ $$0PERI:(DE-600)1499975-4$$a10.1016/j.compfluid.2023.106150$$gVol. 271, p. 106150 -$$p106150$$tComputers & fluids$$v271$$x0045-7930$$y2024
001021623 8564_ $$uhttps://juser.fz-juelich.de/record/1021623/files/FZJ-2024-00886.pdf$$yOpenAccess
001021623 8564_ $$uhttps://juser.fz-juelich.de/record/1021623/files/FZJ-2024-00886.gif?subformat=icon$$xicon$$yOpenAccess
001021623 8564_ $$uhttps://juser.fz-juelich.de/record/1021623/files/FZJ-2024-00886.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021623 8564_ $$uhttps://juser.fz-juelich.de/record/1021623/files/FZJ-2024-00886.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021623 8564_ $$uhttps://juser.fz-juelich.de/record/1021623/files/FZJ-2024-00886.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021623 909CO $$ooai:juser.fz-juelich.de:1021623$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001021623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192255$$aForschungszentrum Jülich$$b0$$kFZJ
001021623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168541$$aForschungszentrum Jülich$$b1$$kFZJ
001021623 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001021623 9141_ $$y2024
001021623 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021623 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001021623 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001021623 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-17
001021623 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001021623 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT FLUIDS : 2022$$d2024-12-17
001021623 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001021623 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-17
001021623 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2024-12-17
001021623 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-17
001021623 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001021623 980__ $$ajournal
001021623 980__ $$aVDB
001021623 980__ $$aUNRESTRICTED
001021623 980__ $$aI:(DE-Juel1)JSC-20090406
001021623 9801_ $$aFullTexts