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Abstract

Direct numerical simulation (DNS) of fluid flow problems has been one of the most important applications of high-performance
computing (HPC) in the last decades. For example, turbulent flows require the simultaneous resolution of multiple spatial and
temporal scales as all scales are coupled, resulting in very large simulations with enormous degrees of freedom. Another example is
reactive flows, which typically result in a large system of coupled differential equations and multiple transport equations that must
be solved simultaneously. In addition, many flows exhibit chaotic behavior, meaning that only statistical ensembles of results can
be compared, further increasing the computational time. In this work, a combined HPC/deep learning (DL) workflow is presented
that drastically reduces the overall computational time required while still providing acceptable accuracy.

Traditionally, all the simulations required to compute ensemble statistics are performed using expensive DNS. The idea behind
the combined HPC/DL workflow is to reduce the number of expensive DNSs by developing a DL-assisted large-eddy simulation
(LES) approach that uses a sophisticated DL network, called PIESRGAN, as a subfilter model for all unclosed terms and is accurate
enough to substitute DNSs. The remaining DNSs are thus used in two ways: first, as data contributing to the ensemble statistics,
and second, as data used to train the DL network. It was found that in many cases two remaining DNSs are sufficient for training
the LES approach. The cost of the DL-supported LES is usually more than one order of magnitude cheaper than the DNS, which

drastically speeds up the workflow, even considering the overhead for training the DL network.
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1. Introduction

Solving the Navier-Stokes or derived equations for fluid
flows, possibly coupled with multi-physics phenomena, is one
of the most established high performance computing (HPC) ap-
plications. However, even with today’s fastest supercomput-
ers, some problems would be prohibitively expensive to solve.
Typical engineering flow applications have in common that a
simulation must properly discretize the large-scale flow behav-
ior, such as that enforced by geometry features. This is partic-
ularly challenging for turbulent flows, which present another
challenge: All scales must be simultaneously fully resolved
down to the smallest scale of fluid motion to accurately pre-
dict its behavior because all length scales are coupled. The
more turbulent a flow is, as measured by the Reynolds num-
ber, the ratio of inertial to viscous forces, the more the large
and small scales are separated [1]. Consequently, direct numer-
ical simulations (DNS) that aim to resolve all scales of turbu-
lent flows can become very expensive - especially since many
common engineering problems are highly turbulent. Therefore,
many flow simulations require modeling of smaller scales to
become computationally affordable, such as in large-eddy sim-
ulation (LES) [1, 2]. This can be done by decoupling the flow
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scales through a filter operation. Then, only the larger scales
are solved, and the effect of the smaller scales below the filter
on the larger scales is modeled. In LES, these so-called subfil-
ter models, such as the Smagorinsky model [3], are therefore
crucial.

A particularly challenging fluid flow problem is turbulent
combustion. The chemistry that must be accurately predicted
adds another layer of complexity. This is often done by solv-
ing a set of coupled partial differential equations (PDEs) for
individual species along with the flow equations. This makes
the simulations much more expensive than pure turbulent cases,
and the resulting data are very large, since the data of all scalar
fields must be stored. Furthermore, in order to sufficiently dis-
cretize e. g. a reaction zone [2], the smallest chemically rele-
vant scales can be even smaller than the flow scales and thus
require an even finer mesh.All in all, simulating turbulent flows
with combustion quickly becomes prohibitively expensive and
is often done on the largest supercomputers available. For this
reason, they are an excellent target case for the present work.

This paper presents the application of recently developed
Al super-resolution-based subfilter models to LES[4, 5, 6, 7, 8,
9, 10, 11, 12], focusing on their use to accelerate large-scale su-
percomputing workflows. Much attention has been given in the
computer science community to Al super-resolution or single
image super-resolution (SISR) problems. In such SISR prob-
lems, machine learning (ML) or deep learning (DL) techniques
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are used to add information to images in order to increase image
resolution (i.e., to super-resolve the image). Typically, a net-
work is trained on a large number of images to extract and learn
features that are successively added to the super-resolved target
image based on local information. In this way, they outperform
classical techniques such as bicubic interpolation. To directly
learn the end-to-end mapping between low- and high-resolution
images, Dong et al. [13] introduced a super-resolution convo-
lutional neural network (SRCNN), a deep convolutional neu-
ral network (CNN). Their approach has been continuously im-
proved [14, 15, 16, 17, 18, 19, 20, 21] to correct several short-
comings, such as oversmoothed results, and to improve predic-
tion accuracy, e.g., by introducing the concept of perceptual
loss to better predict high-frequency details. Ledig et al. [22]
suggested the use of generative adversarial networks (GANs) [23]
instead of CNNs, which was further updated to the enhanced
super-resolution GAN (ESRGAN) [24].

The ambition to add information based on the local state
makes Al super-resolution a promising tool for any kind of
underresolved simulation and experimental data, such as from
satellites for weather prediction or many HPC problems rang-
ing from climate research [25] to cosmology. [26]. However,
this work focuses on the application of Al super-resolution to
LES subfilter modeling to efficiently advance flow simulations
in time, focusing on the case of turbulent premixed flame ker-
nels. Turbulent premixed flame kernels have already been stud-
ied with super-resolution LES by Bode et al. [7]. Their work
is substantially extended by the analysis and discussion in this
paper. This includes a novel discussion of flame morphology,
a first evaluation of the resulting scale-by-scale budget, and
a quantification of the closure error with super-resolved LES
data. Furthermore, a detailed discussion of training and evalu-
ation costs is provided, emphasizing the speed-up potential of
super-resolution LES. Finally, super-resolution LES results are
used to quantify statistical fluctuations for an application case.

This paper is organized as follows: The next section ex-
plains the subfilter modeling approach, including the architec-
ture, algorithm, and implementation details. Subsequently, ad-
ditional methods are described. Then, the physical results of
the flame kernel case are presented, the prediction quality of the
model is highlighted, and computational aspects are discussed.
The paper finishes with conclusions.

2. Super-Resolution Subfilter Modeling

This section summarizes the essential aspects of the so-

where 0, is the time derivative, V is the del operator correspond-
ing to the spatial coordinates, p is the density, u is the velocity
vector, D is the molecular diffusivity, and w is the source term.
The direct solution of Eq. (1) together with other equations,
such as those for density, momentum, and energy, would be
called DNS if the simulation sufficiently resolves all relevant
scales. A filter kernel G(r) is used to decouple the large and
small scales in the LES. This operation can be defined as

() = f f f G(r){-}(x - r)dr, 2

where an overbar denotes filtered quantities. Examples for G
are the symmetric Gaussian filter kernel given by

K2 AZ
G = eXP( 1 ) 3)
where « is the magnitude of the wavenumber vector k, and
wavenumber cutoff filter kernels.

It is convenient to work with Favre-filtering, denoted by a
tilde and defined as p{-} = of-}., for compressible and variable
density flows. A quantity can then be split into a filtered part
and the subfilter contribution as {-} = {-}+{-}"” with {-}"” = 0. Ap-
plied to Eq. (1) and assuming constant diffusivity and Reynolds
operators, the Favre-filtered equation becomes

9, (pe) + V - (pou) = V? (Dpg) + & - V - (pp"u”),  (4)

which is very similar to the unfiltered equation, Eq. (1), but
has an additional term, which is shown here as the last term.
All but this last term contain only filtered quantities, which can
be fully resolved because the very small, possibly unresolvable
scales are removed by the filter. However, the additional term
in Eq. (4) contains subfilter contributions that are unknown in
the LES, so this term is not closed and must be modeled.

2.2. Architecture

PIESRGAN is based on the idea of GANSs, which are char-
acterized by a generator network and a discriminator network.
GAN models are generative models that aim at estimating the
unknown probability density of observed data without an ex-
plicit data likelihood function, i. e. with unsupervised learning.
The generator network is used for modeling and creates new
modeled data. The discriminator tries to distinguish between
generator-generated and real data and provides feedback to the
generator network. Thus, as the learning process progresses,

called physics-informed enhanced super-resolution GAN (PIESRGAth@’generator gets better at creating data that is as close to real

which will be applied as a super-resolution subfilter approach in
the following. First, a model equation is introduced to explain
the necessity of subfilter models in the LES context. Then, the
architecture of the network and the closure algorithm are de-
scribed. Finally, training and HPC implementation aspects are
discussed.

2.1. Model Problem
A model transport equation for a scalar ¢ is

9 (pg) + V - (pgu) = V- (0DV (¢)) + @, ey

data as possible, and the discriminator learns to better identify
fake data. This process can be thought of as two players playing
a minimax zero-sum game to estimate the probability distribu-
tion of the unknown data.

The network architecture and training process is sketched
in Fig. 1. Fully resolved 3-dimensional (3-D) data ("H”) is fil-
tered to obtain filtered data ("F”). The filtered data is used as
input to the generator to produce the reconstructed data ("R”).
The accuracy of the reconstructed data is evaluated using the
fully resolved data. The discriminator attempts to discriminate



between reconstructed and fully resolved data. The accuracy of
the reconstruction is measured by the loss function which is

-£ = ﬂl Ladversarial + ﬂZL'pixel + ,BSLgradient + ,84Lphysics’ (5)

where 31, B2, B3, and B4 are coefficients that weight the different
contributions of the loss terms, with };5; = 1. In Eq. (5), the
adversarial loss is the relativistic adversarial loss of the discrim-
inator/generator, which measures both how well the generator is
able to produce accurate reconstructed data relative to the fully
resolved data, and how well the discriminator is able to detect
false data. The pixel loss and the gradient loss are defined us-
ing the mean-squared error (MSE) of the feature itself and the
gradient of the feature, respectively. The physics loss enforces
physically motivated conditions such as conservation of mass,
species, and elements, depending on the underlying physics of
the problem. It reads

Lphysics = ﬁ41 Lmass + ﬁ42Lspecies + ,843Lelements’ (6)

where B41, B42, and B4z are coeflicients that weight the various
physical contributions to the loss term, with >;84; = 1. The
physically motivated loss term is very important for the appli-
cation of PIESRGAN to flow problems. If the conservation
laws are not very well fulfilled, the simulations tend to explode
rapidly, which is an important difference to super-resolution in
the context of images. Errors that may be acceptable there can
easily become too large for use as a subfilter model [5].

The 3-D CNN layers (Conv3D) [27] are the backbone of the
generator. They use a kernel size of 3 and stride 1 combined
with Leaky Rectified Linear Unit (LeakyReLU) layers for ac-
tivation [28]. The residual in residual dense block (RRDB) in-
troduced for ESRGAN is essential for the performance of state-
of-the-art super-resolution. It replaces the residual block (RB)
used in previous architectures and includes fundamental archi-
tectural elements such as residual dense blocks (RDBs) with
skip connections. A residual scaling factor SBrsr helps to avoid
instabilities in forward and backward propagation. RDBs use
internal dense connections. The output of each layer within the
dense block (DB) is sent to all subsequent layers. The discrimi-
nator network is simpler. It inherits basic CNN layers (Conv3D)
combined with LeakyReLU layers for activation with and with-
out batch normalization (BN). The final layers include a fully
connected layer with LeakyReLLU and dropout with dropout
factor Byropout- For all cases in this work, 80 layers were used for
the generator network and 28 layers were used for the discrim-
inator network. A summary of all hyperparameters is given in
Tab. 1. In general, the network hyperparameters were found to
be robust with respect to the different test cases, i. e., a working
combination for one case usually results in sufficiently accu-
rate results for other cases. However, the complex combustion
case presented in this work requires more physically motivated
terms as part of the loss function than the cases discussed by
Bode et al. [5]. Since the additional terms for Lypysics implicitly
reduce the weight for the original mass conversation enforce-
ment term, the range for 84 has been increased. Subsequently,
the lower bound for 8, was reduced to satisfy the summation
condition. In general, the S8 coeflicients cannot be estimated

theoretically and are the result of extensive testing. This can be
done either manually or using AutoML frameworks.

Table 1: Overview of the PIESRGAN hyperparameters. The given ranges rep-
resent the sensitivity intervals with acceptable network results. The central val-
ues were used for the case in this work.

B, [02x1075,0.6 x 10%,0.8 x 10-7]
B2 [0.721,0.890,0.918]
Bs [0.04,0.06,0.15]
Ba [0.01,0.05,0.18]
BRSF [0.1,0.2,0.3]
ﬁdropoul [02, 04, 05]
Lgenerator [12x107°,4.5x107%,5.0 x 107°]

[4.4%107°,4.5%1075,8.5 x 1079]

ldiscriminator

2.3. Algorithm

PIESRGAN-LES is advanced in time using the established
LES equations. As a consequence of the filter operation on
the equations, unclosed terms appear that require information
below the filter width to be evaluated. The LES subfilter algo-
rithm aims to reconstruct this necessary information to close the
LES equations. This is done at each time step. Chemistry can
be included in the PIESRGAN during the training process [6].

The species splitting introduced by Bode [6, 8] was used
for the production runs in this work. Consequently, the set of
species was split into primary and secondary species. While
the secondary species were updated at the same time as the ve-
locities, the update of the primary species is shifted by half a
time step. Furthermore, the prediction accuracy for the primary
species is improved by solving additional transport equations
on the reconstructed mesh. Solving these additional transport
equations at high resolution also helps to deal with small recon-
struction errors and dissipates small Gibbs-type errors.

Since chemistry is often only locally active, this can also be
used to save computational time by adaptively solving only in
relevant regions. The algorithm starts with the LES solution @,
at time step n, which includes the entirety of all fields in the
simulation except the primary species, and the LES solution of
the primary species E;“/ 2 at time step n + 1/2. It consists of
repeating the following steps:

1. Use the PIESRGAN to reconstruct @y from @f .o with

E7+'72 as additional information.

2. Use @y to estimate the unclosed terms W] ¢ in the LES
equations for all @ fields by applying a filter operator.

3. Use W[ q and ®f ¢ to advance the LES equations of ® to

n+1
(DLES .

4. Use the PIESRGAN to reconstruct E'l’;l/ 2 from EEEIS/ 2,

5. Use E¢"'/% to update the fields of Z to E;;”/ Zupdate 1
solving the unfiltered scalar equations on the mesh of
Eg’l/ % with @y as additional information.

6. Use to estimate the unclosed terms Fﬁ::ls/ Zin
the LES equations of E for all fields by evaluating the
local terms with E;’;l/ Zupdate Y, (I)g+1 , and @} as well as
applying a filter operator.

.:n+1/2;update
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Figure 1: Sketch of PIESRGAN. ”H” denotes high-fidelity data, such as DNS data, ”F” are corresponding filtered data, and ”R” are the reconstructed data. The
components are: Conv3D - 3D Convolutional Layer, LeakyReLU - Activation Function, DB - Dense Block, RDB - Residual Dense Block, RRDB - Residual in
Residual Dense Block, Srsr - Residual Scaling Factor, BN - Batch Normalization, Dense - Fully Connected Layer, Dropout - Regularization Component, Baropout -

Dropout Factor. Image from [5] which is under CC BY 4.0 license.

7. Use FEEIS/ % and Eﬁgls/ ? to advance the LES equations of 2

=n+3/2
to E5g "

2.4. Training Details

The data was split into training and test data to avoid re-
production of fully seen data. During the training and querying
process, it was found that consistent normalization of quanti-
ties is very important for highly accurate results [5]. For ex-
ample, in turbulence and combustion, some quantities have a
logarithmic behavior. A normalization and transformation to a
non-logarithmic scale supports the learning ability of the neu-
ral network. Furthermore, the training and reconstruction are
done on the basis of subboxes, since the reconstruction of too
large boxes at once can become very memory intensive. Typi-
cally, each subbox is chosen large enough to cover the relevant
physical scales [5], and sizes from 163 to 32 gave good results
for the test cases presented in this work. The filter width can
become problematic when non-uniform meshes are used. In
these cases, training with multiple filter widths is suggested to
achieve good accuracy over the entire domain [8].

A common challenge during the training process is the ini-
tialization of the network weights. To simplify the training
process, the trained weights of the turbulence-only case were
used to initialize the weights of the networks for the combus-
tion cases. The generator and discriminator can then be further
updated with the case-specific data. However, it was found that
further updating of the discriminator weights is often not de-
sirable, and that generator-only updates lead to better overall
prediction results.

The extrapolation capability of data-driven methods is al-
ways an issue. Many trained networks only work well in re-
gions that were accessible during the training process. This can
be very problematic in flow applications, where low Reynolds
number data is often abundant, while high Reynolds number
data is not computable at all, making transfer learning difficult.
To deal with this problem, concepts such as two-step training
approaches [5] can be used, relying on the improved predictive
capabilities of GANs compared to single networks [6]. This
open question is beyond the scope of the present work.

2.5. High-Performance Computing Implementation Details

The latest supercomputers derive most of their power from
GPUs. For example, each JURECA-DC GPU cluster node at
the Jiilich Supercomputing Center, Forschungszentrum Jiilich,
has two AMD EPYC 7742 CPUs with a total of 128 cores and
four Nvidia A100 GPUs, resulting in 2322 EFLOP. 94.4 % of
this performance comes from the GPUs, while all CPU cores
account for only 5.6 %. Therefore, any efficient HPC imple-
mentation must make maximum use of the GPUs, and in or-
der to use the GPUs efficiently, PIESRGAN was implemented
using a TensorFlor/Keras framework with OpenMP, MPI, and
CUDA. The implementation details for training and simulation
with PIESRGAN are described in the following two sections.

The implementation could be simplified if the computing
power of the CPUs were neglected and everything was com-
puted on the GPUs. Considering the FLOP performance, this
would lead to only small losses on modern computing nodes,
as discussed for the JURECA-DC GPU cluster nodes. How-
ever, there are two practical reasons against this: First, on many
cluster nodes, the ratio of CPU cores to the number of GPUs is
larger, shifting the available computing power toward the CPUs.
Second, and more importantly, many complex simulation codes
have not yet been ported to GPUs and may never be. Therefore,
they would not be able to adopt a GPU-only approach, making
a high degree of portability inevitable given the software frame-
works currently in use. As a consequence, the approach taken
in this work relies on a well-defined API. However, the use of
CPUs and GPUs also means that an imbalance between CPU
and GPU workloads can thwart the overall simulation perfor-
mance, since, e. g., the GPUs often have to wait until the CPUs
have completed their equations. As mentioned before, the size
of the reconstructed subboxes can be used to balance this load.
The larger the subboxes, the more expensive it is for the GPUs,
but the smaller the number of cells on the LES mesh that the
CPUs need to process. Note that the API can also be used with
CPUs on both sides, allowing PIESRGAN-LES to run on CPU-
only clusters.

To facilitate the reproducibility of this work and clarify more
technical details, a basic version of PIESRGAN is available on
GitLab (https://git.rwth-aachen.de/Mathis.Bode/PIESRGAN.git).



3. Further Methods

This section presents further methods used in the discussion
of the results, such as the numerical methods of the simulation
code framework and the tools used to analyze the physics of the
premixed flame kernel case.

3.1. Simulation Code Framework

The cases were computed with the low-Mach solver of the
CIAO code on a staggered mesh [29]. CIAO is an arbitrary
order finite difference code that solves the Navier-Stokes equa-
tions together with multi-physics effects [30]. It is optimized to
run efficiently on CPU-intensive supercomputers [31, 32]. The
Poisson equation was solved using the HYPRE-AMG multi-
grid solver [33, 34], and the species and temperature equations
were discretized using a fifth-order weighted essentially non-
oscillatory (WENO) scheme [35]. Furthermore, the symmetric
operator split of Strang [36] was applied to these equations. The
resulting system of ordinary differential equations for the zero-
dimensional homogeneous reactor in each grid cell was solved
with a fully time-implicit backward difference method [37, 38].
The Hirschfelder and Curtiss approximation [39] was used with
a velocity correction to ensure species mass conservation to
simplify multi-species diffusion.

3.2. Flame Geometry

The geometric properties of a flame kernel are sufficient
to accurately predict its macroscopic properties such as flame
speed and heat release, assuming the laminar flamelet concept
and unity Lewis numbers. A key is the flame surface density X,
which determines the reaction rate [40]. Due to the interaction
with the turbulent flow, the flame surface exhibits a wide range
of different scales. These range from integral scales, which
contain information about the initial and boundary conditions,
to the Kolmogorov length scale, which is the dissipative limit
scale for which a quasi-universal statistical theory exists [41].

Given a progress variable £ that varies in space, a threshold
{o can be used to define an interface that separates the regions
where {(x) > (p from the regions where {(x) < {,. Conse-
quently, for a given threshold, a phase indicator function I'(x, f)
can be defined as I'(x,t) = H(l(x,t) — &), where H is the
Heaviside step function. To proceed, the structure function of
the phase indicator function, i.e,

(@D (r; ) = (T(x +1,1) = T(x, 1)), (7

is introduced and finally computed by taking an angular average
to allow a scale sensitive analysis of the geometry of the surface
of the flame kernel.

The relationship between the indicator structure function
and the morphology of the flame kernel surface can be demon-
strated by taking the small and large scale boundaries. Kirste
and Parod [42] showed that for class C2, the small scale limit of
Eq. (7) is given by

lin(l)((él")z) = % +0(?), (8

where the surface density is given by
= (VI €))

and quantifies the area of the iso-scalar surface of the flame di-
vided by the volume V. Note that the calculation of the surface
density by Eq. (7) is computationally very efficient and does not
require the tessellation of the iso-surface or the definition of a
level set function. In the large-scale limit, ((6T)?) tends to

}L%((éf)2> = XIH(1 = (T)) (10)

and is therefore related to the volume (I') enclosed by the iso-
surface. If there is sufficient scale separation, Eq. (7) also gives
information about the fractal dimension of the flame kernel sur-
face. Furthermore, it is common to express the surface density
by a characteristic length scale

_ DA =)

Ly 5

QY
which is related to the wrinkle scale Ly = (4% a)”" of pre-
mixed flames, which lies between the Taylor microscale and the
Kolmogorov scale, as recently shown by Kulkarni et al. [43].

3.3. Flame Morphology

The morphology of the flame kernel surface plays an im-
portant role in the evolution of the flame. The flame speed de-
pends on geometrical features, such as the local curvature, and
the interaction of the flame kernel with the surrounding flow
field, represented by the stretch rate. The modeling of flame
speed and heat release rate requires an accurate prediction of
the characteristics of the flame surface.

The modeling of turbulent premixed flames is often based
on the so-called level-set approach, where the propagation of
the flame surface is modeled by prescribing a burning veloc-
ity. This burning velocity depends on the local morphology of
the flame surface and its interaction with the turbulence [44].
A precise knowledge of the morphology of turbulent flames is
therefore essential to accurately predict flame propagation. In
the next section, a scale sensitive approach [45] is used to test
the ability of the PIERSGAN to provide this information.

A kinematic scale-sensitive framework has been developed
to analyze the evolution of reacting turbulent flame fronts by
Gauding et al. [45]. This framework is derived from first prin-
ciples and is based on a two-point statistical equation for iso-
scalar sets representing the flame front. It provides detailed
information on turbulent strain and heat release on the flame
structure and flame propagation at different scales and is there-
fore ideally suited to validate the PIERSGAN.

The statistical scale-sensitive budget for the indicator struc-
ture function in scale space r is given by

FLOT)) = —(V, - ((5u)(ST)*))
N———

Unsteady Transfer—r
+2(S 4)sZ — KIS TV +2((0D) (Ve - 1)),
———
S 4—Term Dilatation

12)



where the superscript #® = (e* + 7)/2 is the arithmetic mean
of the quantity e between the two points x* and x~. Equa-
tion (12) describes the relevant physical effects acting on the
flame surface defined by the indicator function I'(x, f) and, in
addition to the unsteady term, includes an inter-scale transfer
term, a diffusion term resulting from the displacement speed S 4,
and a dilatation term that accounts for the density change over
the flame surface due to heat release. Knowledge of the dis-
placement speed is essential for modeling turbulent premixed
flames. Equation (12) is derived from first principles and test-
ing whether the equation is satisfied over the full range of scales
r is an extensive validation of the PIERSGAN approach.

4. Results and Discussion

This section presents modeling results for a premixed flame
kernel with uniform Lewis numbers. The accuracy and compu-
tational cost are discussed.

4.1. Premixed Flame Kernel

A database of different iso-octane/air flame kernels was used
as an application in this work. The cases were computed by
Falkenstein et al. [46, 47, 48] and include fully turbulent flame
kernels and planar cases, as well as cases with unity Lewis num-
bers and constant Lewis numbers. The turbulent flame kernels
used a uniform mesh of 960 grid points per direction to dis-
cretize a periodic box resulting in five cells per Kolmogorov
length at the start of the simulation and a reaction mechanism
with 26 species. The box was always initialized with homoge-
neous isotropic turbulence (HIT), which decays over time and
mimics conditions in SI engines. The unburnt temperature is
T, = 600K, the initial pressure is po = 6bar, and the air-fuel
equivalence ratio is ¢ = 1.0 for all cases and the cases are in
the thin reaction zone combustion regime. This work focuses
on the unity Lewis number case. Note that five cells per Kol-
mogorov length resolves the turbulence very well. However,
the flame thickness is significantly smaller, making this high
resolution necessary [46].

Falkenstein et al. [46] introduced a simplified reaction progress

variable ¢ with the thermal diffusion coefficient Dy, as the dif-
fusion coefficient to simplify their analysis. It reads

9; () +V - (pud) =V - (0D V () + @y, (13)

where @y is the chemical source term of the simplified reaction
progress variable defined as

(l)év = u')H2 + d)HZO + wco + d)coz. (14)

The evolution of a flame kernel realization is visualized in
Fig. 2, and the 3-D structure is shown in Fig. 3.

Quantitatively, the evolution of the flame kernel with time
is shown in Figs. 4-6 for the turbulent kinetic energy in the
unburnt mixture, the surface density X, and the characteristic
length scale of the surface Ly. Although the HIT decays, the
decay is very slow due to the short time span considered. The
surface density and the surface density length scale are more

Figure 2: Visualization of 2-D slices of £, w,, and U (left to right) for five dif-
ferent increasing time steps (top to bottom) for the fully turbulent flame kernel
with unity Lewis number. The first time shows 6.0 x 107> s, and the time incre-
ment is 7.5 X 1075 s. The final time is 3.6 x 107 s, which is also used for the
a priori analysis. Colormaps span from blue (minimum) over green to yellow
(maximum). Note that the flame kernel does not break into parts at the latest
time shown. A coherent flame kernel topology was maintained at all times.

Figure 3: Flame surface of one flame kernel realization colored with the source
term of a progress variable.

interesting. The surface density is an important quantity for
the global heat release [46, 47, 48]. It increases with time as
the wrinkling increases. The characteristic length scale grows
slightly with time.

4.2. Flame Morphology

The budget given by Eq. (12) is shown in Fig. 7 for the
DNS data. The budget reflects the notion that the sum of the
dilation and transfer terms is positive because turbulent motion
increases the morphological content of the flame surface. On
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Figure 4: Temporal evolution of the averaged turbulent kinetic energy in the
unburnt mixture (ky ).
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Figure 5: Temporal evolution of the surface density .
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Figure 6: Temporal evolution of the characteristic length scale Ly.

the other hand, the diffusion term is negative, reflecting the
smoothing effect of molecular diffusion on the flame surface.
The unsteady term is strictly positive, indicating the growth of
the flame core volume by chemical reaction. The budget is well
closed on all scales.

4.3. Modeling Quality

Figure 8 presents reconstruction results for the simplified
reaction progress variable, two species mass fractions, and a
velocity component. The agreement between the fully resolved

and reconstructed data is good. The filtered data are less sharp
as they have less small-scale structure due to the 15 cells filter-
ing with an explicit Gaussian filter. Note that due to the periodic
boundary conditions, the same filter can be applied everywhere.

A first quantitative but still a priori test can be done using
the scale-by-scale budget introduced in Sec. 4.2 and shown in
Fig. 7. Figure 9 shows the difference of the budget between
the DNS data and the reconstructed data obtained by PIERS-
GAN. This difference is close to zero on all scales except the
very largest scales beyond the radius of the flame kernel. This
proves the validity of the accelerated HPC/DL-workflow over
all scales. Since the largest scales do not contribute significantly
to the calculation of the displacement speed S 4, the PIERSGAN
is well suited for modeling turbulent flames.

Falkenstein et al. [47, 48] indicate that accurate prediction
of surface growth is a key to understanding cycle-to-cycle vari-
ations (CCVs) in terms of global heat release in such flame ker-
nel setups. The surface growth is a highly coupled quantity and
very difficult to predict with reduced order models. The a poste-
riori prediction of the surface density is therefore a perfect met-
ric to evaluate the prediction quality of PIESRGAN-LES. The
evolution of the flame surface density X is shown in Fig. 10,as
well as the ensemble averaged turbulent kinetic energy in the
unburnt mixture in Fig. 11. To further demonstrate the train-
ing and execution processes of PIESRGAN, the flame surface
densities of three different flame kernels are shown, two flame
kernels used for training and one flame kernel used for test-
ing. Variations between the different runs can be seen, making
the accurate prediction of the target flame kernel remarkable.
Overall, the agreement between DNS data and PIESRGAN-
LES data is good, highlighting the potential of the introduced
PIESRGAN:-subfilter modeling approach.

4.4. Speedup

Two important factors must be taken into account when
evaluating the simple speedup of PIESRGAN-LES over DNS
without training costs: First, PIESRGAN shifts and often re-
duces the number of operations from advancing quantities on a
fine mesh with resulting smaller time step to advancing quanti-
ties on a coarser mesh with resulting larger time step plus doing
the reconstruction. Depending on the case, this can result in a
speedup for PIESRGAN-LES even on a CPU-only cluster that
can be used for both PIESRGAN-LES and DNS. Second, the
ability of PIESRGAN-LES to efficiently use HPC clusters with
GPUs must be considered. However, a fair consideration is dif-
ficult if DNS is not able to use GPUs at all. For example, the su-
percomputing environment at the Jiilich Supercomputing Cen-
tre (JSC) at Forschungszentrum Jiilich (FZJ), provides nodes
with and without GPUs. However, the billing for both types
of nodes is based only on the number of CPU cores (“core-h”)
used, even though the nodes with GPUs are much more pow-
erful, as discussed in Sec. 2.5, and therefore a core-hour on a
node equipped with GPUs should be more expensive. On the
other hand, using FLOPs alone to evaluate computational cost
is also inappropriate because CPU units are typically capable of
more complex operations than GPU units.
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Figure 7: Scale-by-scale budget computed from DNS data.

Figure 8: Visualization of one turbulent premixed flame kernel realization. The
first row shows the temporal evaluation of the simplified progress variable ¢
at 0.06 ms, 0.21 ms, and 0.36ms. All other figures show a zoomed view of
the fully resolved data, filtered data, and reconstructed data for the simplified
reaction progress variable £, the CgHjg mass fraction, Ycgyis, the OH mass
fraction, You, and a velocity component u employing PIESRGAN at 0.36 ms.
Colormaps span from blue (minimum) to yellow (maximum).

4.5. Training Cost

As a data-driven method, PIESRGAN requires a training
cost that is determined by the cost of computing the training
data and the cost of the training itself. As described above, the
training is done based on subsets of the whole domain. There-
fore, a measure of training cost is given by the size of the data
used for training and the number of subboxes that can be trained
per GPU per minute, assuming nearly linear scaling for training
with multiple GPUs. Bode [9] evaluated that more than 60 sub-
boxes with 4096 cells per minute can be used for training on
nodes equipped with two Tesla V100 GPUs. This means that
with current GPUs, the cost of training itself is typically not
the main cost factor for flow problems. In addition to the good
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Figure 9: Closing error of scale-by-scale budget of reconstructed data compared
to DNS data.
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Figure 10: Evolution of the flame surface density X over time 7.

training performance of modern GPUs, this is due to the often
very expensive nature of turbulent flow simulations, in contrast
to many other domains where training is relatively expensive.
The training cost for the premixed case was 273 x 10° core-h
(compared to 22 x 10° core-h for data generation). Note that
the cost of training depends strongly on factors such as the time
resolution of the simulation data and the total number of data
samples used per time step. Furthermore, for practical appli-
cations, the computational time budget needs to account for di-
vergent training trials, which are likely and can greatly increase
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Figure 11: Evolution of the ensemble-averaged turbulent kinetic energy in the
unburnt (k) over time ¢.

the cost.

The question of the cost of training data is more difficult to
answer and highly case-dependent. There are many scenarios
where usable data is already available. This could be from pre-
vious simulations, but also from experiments. However, it is
important to note that not all existing data is useful for training,
e. g., the time resolution of the stored data must be fine enough.

4.6. Computing Cost

Various metrics can be defined to access the computational
cost, as different simulation workflows have different require-
ments. For time-critical simulations, e. g., simulations coupled
to an experiment, the time-to-solution may be the most impor-
tant factor, which is typically reduced by using more parallel
cores, usually resulting in less efficient simulations due to an
overhead caused by parallelization. The overhead can be caused
by additional or slow communication between cores, nodes, or
even clusters. If too many cores are used for a particular task,
the actual computation time is relatively reduced compared to
the communication time, which has some fixed timings that are
independent of the number of cores involved. On the other
hand, efficiency may be the most important metric for work-
flows that want to make the most of their limited computation
time. Often, a trade-off between time-to-solution and efficiency
is chosen. Another level of complexity is added when chaotic
processes, such as turbulence, are involved in the simulations.
Since the results are only statistically meaningful, enough data
or ensembles must be computed to achieve convergent statis-
tics. In this context, a simplified cost model for complex simu-
lation workflows including ML/DL can be defined as

Crotal =Mensemble X Csimulalion(n[imesteps’ Neells)

+ Ctrainingdata + Ctrainingprocess (15)
~Fc X Nensemble X Niimesteps X Meells
+ CLrainingdata + Ctrainingpmcess (16)

With Zensemble as the number of ensemble simulations, Rgmesteps
as the number of computed time steps per simulation, ngeys
as the number of cells per simulation, Cgmulation @S the cost
per simulation, Ciriningdata @S the cost of computing the training

data, and Cyainingprocess as the cost of performing the PIESRGAN
training. The Eq. (16) assumes a linear influence of the number
of computed time steps and the number of cells on the simula-
tion cost and introduces the cost factor F¢. The linear depen-
dence between the number of time steps and the cost is trivial.
The linear effect of the number of cells is only valid as long as
each core has enough work to do, i.e., if the ratio of cells per
core is large enough, as for the runs in this work. The cost factor
is an estimate of the relative computational cost of a setup and
is, e. g., higher for a simulation with the PIESRGAN-subfilter
model, since it requires more operations, than for the corre-
sponding DNS without subfilter model.

For many turbulent problems, significant deviations between
individual flow realizations can be found. An example of this
is the turbulent premixed flame kernel simulations discussed
above, which were performed explicitly to study variations in
the context of CCVs. CCVs are important in engines, e. g.,
as they can have a significant impact on pollutant formation
and unwanted pre-ignition or knocking. One cause of CCVs
is the initial turbulent field at the beginning of the flame ker-
nel. Therefore, multiple flame kernel simulations must be per-
formed to analyze this effect. Thus, the task is to efficiently use
a given amount of computational time to enable as many (accu-
rate) realizations as possible. For this purpose, 40 x 10° core-h
were available on JURECA-DC (Booster). As already men-
tioned, the cost per DNS realization turned out to be about
11 x 10% core-h (including on-the-fly training) and thus about
four complete realizations would have been possible (without

additional costs for on-the-fly training). To improve this, PIESRGAN-

LESs were used with 7 x 10° cells (compared to 884 x 10 for
the DNS) and a 1.25 times larger time step compared to the
DNS. The cost factor was found to be 16, and two DNS re-
alizations were computed for training to avoid lock-in effects
on the initial state. Thus, about 17 realizations were possible
given the 40 x 10° core-h, compared to less than 4 without the
subfilter modeling approach. Also note that each additional re-
alization also comes at the cost of 1.15 x 10° core-h compared
to the DNS cost of 11 x 10° core-h.

5. Application

The discussed combined HPC/DL-workflow can be applied
to quantitatively evaluate the flame kernel variations. Figure 12
shows the evolution of the flame surface density for several re-
alizations. The effect of the different HIT conditions is evi-
dent. Interestingly, the PIESRGAN-LESs give results outside
the training range, highlighting the advantage of PIESRGAN-
LESs acting on the smallest scales and thus allowing variations
on the larger scales. Finally, the variations of the flame surface
density at 0.36 ms can be quantified as 155.0m~' + 12.9m™!.

6. Conclusions

This paper demonstrates how a combined HPC/DL-workflow
can drastically reduce the computational cost of obtaining sta-
tistical ensemble results. It is able to efficiently predict complex
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Figure 12: Evolution of the flame surface density X over time ¢ for CCVs.

statistics of complex flows, which is usually not possible with
classical subfilter models on current supercomputers. However,
although the GAN architecture used gives good results, further
research is needed to further optimize it and to better under-
stand the impact of certain features on the prediction accuracy.
In addition, the effect of hyperparameters, such as learning rate
or model parameters, needs to be further investigated. All of
these small choices can make a big difference in whether the
learning process converges or diverges. There is still a lot of
engineering work to be done to achieve results as accurate as
those presented here. While the computer science community
has developed a lot of practical experience in this area, the lack
of such practical experience may be the most likely reason for
failure for many domain scientists. Finally, this approach can
only be as good as the underlying data. Therefore, it requires
communities to be more honest about the accuracy and short-
comings of existing cases. Principles such as the use of FAIR
(Findability, Accessibility, Interoperability, and Reuse) are an
important step forward, but need to become more relevant in
everyday science.

The turbulent combustion application case presented in this
work was a carefully chosen example to demonstrate both the
modeling power of Al-based super-resolution in fluid dynamics
and the corresponding computational benefits. However, the
presented modeling framework is not limited to such cases, and
the range of possible applications, from weather prediction to
drug development, seems endless.
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