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eJARA Center for Simulation and Data Sciences, Jülich 52425, Germany

Abstract

Electricity is traded on various markets with different time horizons and reg-

ulations. Short-term intraday trading becomes increasingly important due

to the higher penetration of renewables. In Germany, the intraday electricity

price typically fluctuates around the day-ahead price of the European Power

EXchange (EPEX) spot markets in a distinct hourly pattern. This work

proposes a probabilistic modeling approach that models the intraday price

difference to the day-ahead contracts. The model captures the emerging

hourly pattern by considering the four 15 min intervals in each day-ahead

price interval as a four-dimensional joint probability distribution. The re-

sulting nontrivial, multivariate price difference distribution is learned using

a normalizing flow, i.e., a deep generative model that combines conditional

multivariate density estimation and probabilistic regression. Furthermore,
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this work discusses the influence of different external impact factors based

on literature insights and impact analysis using explainable artificial intel-

ligence (XAI). The normalizing flow is compared to an informed selection

of historical data and probabilistic forecasts using a Gaussian copula and

a Gaussian regression model. Among the different models, the normalizing

flow identifies the trends with the highest accuracy and has the narrowest

prediction intervals. Both the XAI analysis and the empirical experiments

highlight that the immediate history of the price difference realization and

the increments of the day-ahead price have the most substantial impact on

the price difference.

Keywords: Electricity price forecasting; probabilistic forecasting; deep

learning; multivariate modeling

1. Introduction

The liberalization of the European electricity markets has introduced the

auction-based day-ahead market and the continuously traded intraday mar-

ket [1]. The hourly day-ahead auction market is cleared on the day before

delivery and the prices for all trading intervals are published at the same

time [2]. Afterward, the continuous 15 min interval intraday markets aim to

reduce the balance requirements by enabling short-term changes to delivery

and consumption commitments and react to the ramping of supply and de-

mand [3, 4, 5]. The increasing penetration of renewable electricity sources

with low marginal cost [6] causes intraday prices to become more volatile

[7, 8]. Thus, electricity price forecasting (EPF) [9] for the intraday market

becomes increasingly difficult [10, 11] as the forecasts have to account for
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the inherent uncertainty of intermittent renewable electricity supply and hu-

man interaction on the continuous market [1, 5]. Still, accurate forecasts of

intraday prices can lead to significant financial gains [12].

A promising approach to address the uncertainty in EPF uses proba-

bilistic forecasting models that predict a distribution of possible realizations

instead of a single point forecast [13, 14]. The quantitative knowledge of

the uncertainty allows the market participants to develop different strategies

considering possible outcomes and to derive more effective bidding strategies

[14]. Established approaches for probabilistic forecasting include prediction

intervals [13, 15, 16, 17] and density forecasts [18, 19, 20, 21]. Other works use

ensemble forecasts [21] or propose combinations of deterministic and proba-

bilistic approaches [22]. There is also an increasing trend towards machine

learning methods [23].

Most probabilistic EPF papers utilize univariate modeling approaches

[14]. Here, the models predict single time steps in a step-by-step fashion

and consider the correlation between time steps via the autoregressive com-

ponents. Alternatively, multivariate models predict sequences in multi-step

forecasting [19, 24]. For instance, [19] use a multivariate student-t distri-

bution model for intraday prices in Australia. In a study on deterministic

forecasting models, [24] report on the advantages of using a multivariate ap-

proach for day-ahead EPF. Most of the literature on probabilistic EPF only

considers the day-ahead markets [10]. A notable exception is presented by

[20], who perform probabilistic forecasting for both day-ahead and intraday

markets.

The literature on intraday EPF generally addresses the intraday prices
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as a stand-alone prediction problem without considering the relation to the

day-ahead prices [25, 26]. However, separating the intraday EPF from the

day-ahead prices ignores the connection between the two markets, where the

intraday market mainly serves to make adjustments to the fixed day-ahead

contracts [27]. Consequently, the intraday price follows the day-ahead price

trend. Furthermore, the adjustments react to the ramping of supply and

demand, which leads to steadily increasing or decreasing prices in the four

intraday trading intervals of each day-ahead trading interval [28]. Thus, there

is a distinct hourly fluctuation of the intraday prices around the day-ahead

prices that averages to the day-ahead price [29].

This work proposes a modeling approach for intraday electricity prices

that exploits the special relationship between the two electricity markets.

Assuming that the intraday EPF is performed short-term, i.e., after the day-

ahead price is set, the intraday price is modeled via the difference between the

two market prices. Furthermore, the hourly increasing or decreasing patterns

of the four 15 min intervals of each day-ahead price interval are captured using

a multivariate forecasting scheme. Hence, the forecasting problem needs to

predict the four-dimensional price difference vector probability distribution

which is defined by heavy tails, high correlations between the dimensions, and

conditional dependence on external impact factors. Thus, the price difference

vector distribution cannot be modeled via standard probability distribution

models. Instead, this work uses normalizing flows [30], a non-parametric, i.e.,

fully data-driven, distribution model, to learn the probability distribution

of the price difference vector. Normalizing flows learn complex distributions

without a priori assumptions about the data and can include external impact
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factors for probabilistic regression [31, 32]. For scenario generation of other

energy time series, such as renewable electricity generation and electricity

demand, normalizing flows have already shown promising results [33, 34, 35,

36]. The forecasting performance of the normalizing flow is compared to an

informed selection of historical data, a Gaussian copula, and a multivariate

Gaussian regression.

Both day-ahead and intraday prices are heavily influenced by external

impact factors such as renewable electricity generation, import and export,

and demand [37]. However, the literature is scarce on evaluations on the

impact factors for the price differences analyzed and modeled in this study.

Thus, this work investigates the impact of different external factors on the

realization of the price difference vector using explainable artificial intelli-

gence (XAI). XAI is a branch of machine-learning research aiming to design

human-understandable models and post-modeling explanations for black-box

models [38, 39]. An important subbranch of post-modeling explanations in

XAI considers the predictability of the desired labels or values given the

considered input features [40]. In particular, this work uses SHAP-values

(SHapley Additive exPlanations), which are a typical approach to quantify

the impact of each input feature on the output of the machine-learning model.

In previous works, SHAP-values have been successfully applied to analyze the

predictability of power grid frequencies [41], to reveal drivers and risks for

power grid frequency stability [42], predict the electricity mix in the African

grid [43], and to gain insight into solar power forecasting [44].

The remainder of this work is organized as follows: Section 2 introduces

the four-dimensional price difference modeling approach and highlights the
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advantages of multivariate modeling over the traditional univariate approach.

Section 3 introduces the different multivariate probabilistic models. Section 4

discusses relevant external input factors and performs the feature selection

using SHAP-values analysis. Section 5 applies the different distribution mod-

eling approaches to learn the four-dimensional conditional distribution and

discusses the impact of each external input factor via an empirical study.

Finally, Section 6 concludes this work.

2. Electricity price analysis

This Section first describes the used data sets. Second, an approach for

multivariate modeling of intraday electricity prices is proposed. Finally, the

Section compares a univariate and a multivariate sampling approach for the

price difference vector using assessment scores for multivariate probabilistic

forecasting.

2.1. Data description

The majority of electricity is traded on the auction-based day-ahead mar-

ket, while the intraday market is primarily used to make short-term adjust-

ments to the previously submitted bids [28, 27, 29]. The day-ahead market

is settled via an auction one day before delivery and the prices for all hours

are published at the same time [2]. The intraday contracts are negotiated

between the producers and the consumers on different time horizons and for

different periods. Thus, different prices occur for the same intraday trading

interval [1, 3]. As an indicator of the intraday electricity prices, the market

operators release indices of volume-weighted averages [4]. This work uses

the ID3 index, i.e., the index reflecting the volume-weighted average price of
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the last three hours before delivery, as it is the most commonly used indi-

cator [4, 5]. The data set considered in this work is the day-ahead and ID3

price time series recorded over the years of 2018 and 2019 provided by the

[45]. The day-ahead forecasts and actual values for the renewable electricity

production and the loads are taken from [46]. All renewable electricity time

series are recorded in 15 min intervals. Note that the electricity price data

from 2020 and 2021 shows atypical behavior due to the COVID-19 pandemic

[47, 48] and is, therefore, not included.

2.2. Hourly price difference vectors

The volume of electricity traded on the day-ahead and the intraday mar-

kets exemplifies the relationship between the two markets. In 2019, the vol-

ume of day-ahead trades was 501.6 TWh, and the intraday trades amounted

to 83.2 TWh [49]. These numbers highlight how traders primarily trade on

the day-ahead market and then adjust their bids on the intraday market. In-

traday trades address ramping of supply and demand within the day-ahead

trading intervals and compensate for forecast errors of demand and renew-

able electricity supply [28, 50]. In particular, ramping of large suppliers and

consumers leads to a distinct pattern of increasing or decreasing intraday

prices within each day-ahead trading interval [28]. For instance, a scheduled

ramp-up of electricity supply results in an undersupply in the first 15 min-

utes and an oversupply in the last 15 minutes of the respective hour, which

leads to higher prices in the first 15 minutes and lower prices in the last 15

minutes, respectively. Thus, the hour-wise constant day-ahead contracts lead

to hourly patterns in the 15 min intraday prices [28, 29].

Figure 1 shows the average daily day-ahead and intraday prices in 2018
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Figure 1: Average daily profiles of day-ahead and ID3 price trends of 2018 and 2019.

EPEX spot price data from [45].
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and 2019, i.e., each step represents the average price interval over the two

years. As indicated by [28], the average ID3 price within each hour is close to

the respective day-ahead price. Furthermore, the ID3 price either increases

or decreases within the respective day-ahead trading intervals. These ob-

servations lead to the following conclusions about the relationship of the

two price time series: First, the ID3 index fluctuates around the day-ahead

auction price. Second, Figure 1 highlights that the distinct hourly patterns

of either increasing or decreasing steps appear systematically. Exceptions of

this pattern only appear at local minima and maxima of the day-ahead price.

In summary, the relationship between the day-ahead and the intraday mar-

kets as primary and adjustment markets leads to a distinct hourly pattern

of intraday price fluctuations around the day-ahead prices.

The proposed modeling-approach for the ID3 price index aims to capture

the observed patterns. Since the intraday market is used for adjustments

to the day-ahead market, the difference between the two price time series

represents the characteristics of the intraday market. Assuming that the

prediction takes place short term, i.e., after the day-ahead auction has been

settled and the day-ahead prices are known, the ID3 price index can be

described via the sum of the day-ahead price and the difference between

the two price time series. Furthermore, the hourly pattern of fluctuations is

captured by modeling the four steps of price differences in each day-ahead

trading interval as a four-dimensional vector. For a given hour t the price
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difference vector ∆ID3 then reads:

∆ID3(t) =


ID00

3 (t) − DA(t)

ID15
3 (t) − DA(t)

ID30
3 (t) − DA(t)

ID45
3 (t) − DA(t)

 (1)

The four dimensions each describe the difference between intraday (IDXX
3 (t))

and day-ahead (DA(t)) price for a 15 min interval in the hour t. The super-

scripts 00, 15, 30, and 45 indicate the starting minutes of the four intraday

trading intervals.

Note that while the discontinuous day-ahead market sets the prices for

all time intervals simultaneously, the continuous intraday market allows for

trading up to five minutes prior to the delivery, and the prices for each trading

interval are, thus, set independently. Intuitively, a step-by-step forecasting

approach, where each step is informed by the previous, could be consid-

ered more appropriate than the chosen multivariate approach. However, the

multivariate modeling approach is specifically designed to consider the corre-

lation between the forecast dimensions, i.e., the four quarter-hour intervals,

and there are no limitations to the practical application of the multivariate

modeling approach.

2.3. Analysis of the price difference vector distribution

To showcase the advantage of the multivariate modeling approach, this

Subsection first highlights the strong correlation between the four price dif-

ference time steps in each day-ahead trading interval by showing the Pear-

son correlation and then compares a univariate and a multivariate sampling
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Table 1: Pearson correlation within the 4D-∆ID3 distribution (see Equation (2)). Price

data from [45].

∆ID00
3 ∆ID15

3 ∆ID30
3 ∆ID45

3

∆ID00
3 1.00 0.77 0.41 0.09

∆ID15
3 0.77 1.00 0.74 0.46

∆ID30
3 0.41 0.74 1.00 0.83

∆ID45
3 0.09 0.46 0.83 1.00

approach to highlight how the multivariate approach better captures the

correlations between the time steps.

Table 1 shows the Pearson correlation of the four dimensions in the joint

distribution of price differences, i.e., the autocorrelations of the respective

time steps. The correlations between neighboring time steps are high and,

thus, highlight the strong correlation between the time steps within each

day-ahead trading interval. In fact, it appears that each interval is predeter-

mined by the previous dimension, which motivates the multivariate modeling

approach.

To confirm that the multivariate approach captures the correlation of

neighboring time steps better than the classical univariate approach, two dif-

ferent approaches of univariate and multivariate selection of historical data

are compared using scoring metrics for multivariate probabilistic forecasts.

Figure 1 shows a strong dependency of the average realization on the hour

of the day. The multivariate selection is based on this observation and ran-

domly selects historical realizations of the hourly price difference intervals

that occurred during the same hour of the day. Similarly, the univariate
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selection approach randomly selects values that occurred during the same

15 min interval and combines the selections into four-dimensional samples.

Both approaches randomly select price differences from January 2018 to June

2019. July 2019 is set aside as a test set.

Unlike point forecasts, probabilistic forecasts cannot be evaluated by

residual metrics such as the mean squared error or the mean absolute error.

Instead, probabilistic forecasts are typically evaluated in terms of reliability

and sharpness [14]. Here, reliability describes whether the realization lies

within certain prediction intervals. Sharpness analyzes the tightness of the

prediction intervals, i.e., how close the lower and upper boundaries of the

prediction intervals are together [14]. A good probabilistic forecast should

be both reliable and sharp to avoid missing the realization and avoid large

prediction intervals that carry little information.

To evaluate the different sampling approaches, this work uses the en-

ergy score [51, 52] and the variogram score [53]. The energy score [54, 52]

is a widely applied metric for multistep probabilistic forecasts. It assesses

how close the prediction samples are to the realizations and how diverse the

samples are:

ES =
1

N

N∑
s=1

||x− x̂s||2 −
1

2N2

N∑
s=1

N∑
s′=1

||x̂s − x̂s′||2

Here, x is the realized ID3 price-vector, i.e., the actual realization from the

test set, x̂s are sample vectors drawn from the predicted distributions, N

is the number of samples, and || · ||2 is the 2-norm. The variogram score

[53] aims to assess whether a multivariate forecast correctly describes the
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Figure 2: Box plots [55] of the energy score [51, 52] and variogram score [53] distributions

of historical data selected using univariate and multivariate approaches. Price data from

January 2018 to June 2019 [45] is used and the evaluation is performed on July 2019 as

the test set.

correlation between the individual time steps:

VS =
1

N

T̂∑
t=1

T̂∑
t′=1

(
|xt − xt′ |γ −

1

N

N∑
s=1

|x̂s
t − x̂s

t′
|γ
)2

Here, xt are the realized ID3 price time steps, x̂t are time steps of samples

from the predicted ID3 distribution, T̂ = 4 is the dimension of x, i.e., the

number of 15 min intervals in the multivariate prediction, N is the number

of samples, γ is the variogram order (typically γ = 0.5 [53]), and | · | denotes

the absolute value. Both energy score and variogram score are negatively

oriented metrics, i.e., lower values indicate better performance [53, 52].

Figure 2 shows box plots [55] of the energy score and the variogram score
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distributions of the univariate and the multivariate selection approaches ap-

plied to each day-ahead trading interval of the test month, respectively. The

multivariate approach yields lower values for energy scores and variogram

scores and, thus, indicates better agreement with the realizations. In par-

ticular, the variogram score suggests that the univariate selection fails to

represent the correct correlation between the time steps whereas the multi-

variate approach captures the hourly pattern. In conclusion, the results in

Figure 2 confirm that the multivariate approach is better suited to describe

the price difference distribution than a univariate approach. In the following,

the term historical selection refers to the multivariate selection of historical

data.

3. Multivariate probabilistic forecasting of electricity price differ-

ences

The realizations of the hourly price difference vector in Equation (1) follow

an unknown four-dimensional joint distribution:

∆ID3 ∼ p∆ID3 (∆ID3) (2)

Here, p∆ID3 (∆ID3) is the probability density function (PDF) of the vector-

valued random variable ∆ID3. The realizations of the price difference distri-

bution are assumed to be influenced by known external factors. Therefore,

the proposed modeling approach includes these external factors as input fea-

tures y to form a conditional distribution:

∆ID3 ∼ p∆ID3|Y (∆ID3|y) (3)
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Here, p∆ID3|Y (∆ID3|y) is the conditional PDF of ∆ID3 given the input

feature y. Forecasting this conditional multivariate probability distribution

poses a difficult modeling problem. The probability distribution is of un-

known shape and electricity prices are known to exhibit heavy tails [29].

Furthermore, the relationship with the conditional input factors is unknown

and likely nonlinear. Thus, the proposed probabilistic forecasting approach

requires a flexible distribution model that can seamlessly include external

input features with potentially nonlinear effects.

To model the conditional probability distribution of price differences de-

scribed by Equation (3), this work uses the following four approaches: (1)

conditional normalizing flows [31], (2) the informed selection of historical

data presented in Section 2, (3) Gaussian copulas with quantile regression

[56], and (4) multivariate Gaussian regression [57]. The selection of mod-

els aims to provide a variety of näıve, established, and recently published

approaches.

Normalizing flows are non-parametric distribution models that model

high-dimensional complex distributions as an invertible neural network trans-

formation T , with inverse T−1, of a multivariate standard Gaussian ϕ(z)

[58, 30]. Utilizing the change of variables formula, normalizing flows describe

the conditional PDF pX|Y (x|y) of a multivariate random variable X with

realizations x and input features y explicitly [30, 31]:

pX|Y (x|y) = ϕ
(
T−1(x,y)

)
|detJT−1(x,y)| (4)

Here, JT−1 is the Jacobian of the inverse transformation. Normalizing flows

make no assumptions about the data structure and distribution. Thus, by

using sufficiently expressive transformations, normalizing flows can model
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Figure 3: Multivariate probabilistic forecasting scheme. The external input features are

collected in a feature vector y and used to condition the transformation of Gaussian

samples via the normalizing flow.

any distribution [30]. To sample from a normalizing flow, first, samples are

drawn from the multivariate Gaussian, i.e., ẑi ∼ ϕ(z). Second, the samples

and the conditional inputs are transformed using the forward form of the

invertible neural network:

x̂i = T (ẑi, ŷ) ∀i = 1, 2, . . . , N

Here, ŷ are the external input features at the respective time, which are

assumed to be given. Figure 3 shows a sketch of the conditional normalizing

flow modeling scheme. This work implements the invertible neural network

using the real non-volume preserving transformation (RealNVP) [58].

The Gaussian copula is a well-established method to describe multivariate

distributions with nontrivial correlations between the individual dimensions.

The basic approach relies on transforming samples from a uniform distri-
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bution via an estimated inverse cumulative distribution function (CDF). In

forecasting applications, the inverse CDF is estimated via an interpolation

of quantile forecasts from quantile regression. For a detailed introduction

to the combination with quantile regression, we refer the interested reader

to [56]. The present work uses the quantile regression implemented in the

‘statsmodels’ library [59].

Finally, the multivariate Gaussian regression uses neural networks to pre-

dict the mean vector µX and the covariance matrix ΣX of the multivariate

Gaussian as a function of the conditional inputs y [57]:

pX|Y (x|y) = NX|Y (x;µX(y),ΣX(y)) (5)

As the covariance matrix is symmetric, the neural network only needs to

predict a lower-triangular version of ΣX(y) [57]. The predicted mean and

covariance can then be used to sample from the Gaussian distribution pa-

rameterized by the predicted values.

In all models, the electricity price difference vector ∆ID3 takes the role

of the random variable X, and the external factors are the conditional input

features Y . For every realization of the external factors y, the models allow

sampling from the electricity price difference vector distribution ˆ∆ID3 ∼

p∆ID3 as described for the normalizing flow above.

4. Input feature selection

The realizations of both the day-ahead and the intraday prices are influ-

enced by external factors such as the residual loads [28]. However, the driving

factors for the electricity price difference vector are likely to be different com-

pared to those for the absolute day-ahead and intraday prices. In particular,

17



the difference alleviates the impact of some external factors and amplifies the

impact of others. Hence, the selection of input features should not be based

on the standard inputs for day-ahead or intraday price forecasting known in

the literature.

This Section aims to find a highly informative set of external factors that

should be included as input features to the models in Section 3. First, Sec-

tion 4.1 derives a set of possible input feature based on literature impressions

and an analysis of the price time series. Second, Section 4.2 uses explainable

artificial intelligence (XAI) to narrow down the full set to a highly informa-

tive subset of input features.

4.1. Possible input features

The day-ahead prices are determined by the intersection of supply and

demand [25, 60] and influenced by the merit-order curve [26]. The intraday

markets are used to adjust the previously submitted bids to address short-

term changes in supply and demand. Thus, the impact of the forecasted

total electricity demand and the forecasted total renewable electricity supply

is already reflected in the day-ahead prices and has little influence on the

difference between day-ahead prices and intraday prices [28, 50, 29]. The

differences are mostly impacted by the forecasting errors in the residual load,

i.e., for load and renewable electricity generation [28, 29]. For the absolute

intraday prices, Kalukov and Ziel [61] show that the impact of forecast errors

is nonlinear. Notably, the actual renewable forecast errors are only known

a posteriori. Hence, these values are neither known to intraday traders, nor

can they be applied in actual forecasts of the intraday prices. However, hour-

ahead renewable forecast are available [62] and can be used to correct day-
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ahead forecasts, thus affecting the intraday electricity prices. Unfortunately,

these hour-ahead renewable forecasts are not publicly available. Hence, we

use the a posteriori renewable forecasting errors as a proxi in our analysis:

∆PRE
t = PRE

t − P̂RE
t RE ∈ {Solar,Wind,Load}

Here, PRE
t is the actual, P̂RE

t is the day-ahead forecast.

Another important external factor for the fluctuation of the intraday

prices is the ramping of renewables and load [27]. For instance, solar elec-

tricity generation ramps up in the morning and ramps down in the evening,

which leads to large changes in solar power supply within single day-ahead

trading intervals [27]. [63] and [3] find that the ratio of conventional and re-

newable electricity impacts the realizations of both day-ahead and intraday

prices. To investigate the impact of the share of conventional electricity, the

prices of oil and natural gas are considered as input factors.

[29] find that the increments of the day-ahead price, i.e., the difference

between one hour and the next, have a substantial impact on the direction

(increasing or decreasing) and the intensity of the hourly fluctuation. This

observation is confirmed by the average daily price profiles shown in Fig-

ure 1. For increasing or decreasing day-ahead prices, the hourly fluctuation

shows increasing or decreasing patterns, respectively. Furthermore, larger in-

crements appear to induce more significant fluctuations and vice versa. For

local minimum and maximum peak hours in the day-ahead price, Figure 1

shows no distinct trend of the fluctuation.

Figure 1 also indicates that the realizations of the price differences depend

on the time of the day. Thus, the list of possible input features includes a

trigonometric encoding of the hour of the day [64].
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[65] and [29] state that the day-ahead markets in Germany are weak-form

efficient, i.e., the recent history of day-ahead prices does not inform on future

realizations, whereas for intraday prices, there is an advantage from includ-

ing the most recent value in the prediction. To evaluate the impact of prior

realizations on the price difference, Figure 4 shows the Pearson autocorre-

lation function (ACF) of the day-ahead price, the intraday price, and the

difference between the two time series for time lags up to 48 h. The ACF of

the price difference drops quickly to values that are significantly lower com-

pared to those for the day-ahead ACF and the intraday ACF that persist

at high levels over 0.3 over longer time spans. After the rapid drop-off, the

price difference ACF fluctuates at a low level under 0.2 indicating negligible

impact for forecasting tasks. Yet, the first few hours still show high ACF

values. Thus, the two previous hours are included as possible features. The

supplementary material of this work shows further analysis of the time de-

pendency on longer scales. Notably, the price difference time series does not

show any significant trends over the days of the week or the months of the

year over the considered dataset.

In the following, the possible input features are considered in three groups:

The forecast error features, the ramping features, and the price and time

features. The considered feature labels and their descriptions are listed in

Table 2, 3, and 4, respectively.

4.2. Input feature selection via explainable AI

To improve usability and to avoid overfitting of the forecasting models,

the set of input features should be narrowed down to a highly informative

subset. While relevant external impact factors for day-ahead and intraday
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Table 2: Price and time feature labels. The variable t denotes the considered time interval

in hours.

Description Labels

Day Ahead Auction DA

Day Ahead Increments back ∆DA−

Day Ahead Increments ahead ∆DA+

cosine time encoding cos(t)

sine time encoding sin(t)

DA− ID3 at t-1 h (1st interval) ∆ID00
3 (t− 1h)

DA− ID3 at t-1 h (2nd interval) ∆ID15
3 (t− 1h)

DA− ID3 at t-1 h (3rd interval) ∆ID30
3 (t− 1h)

DA− ID3 at t-1 h (4th interval) ∆ID45
3 (t− 1h)

DA− ID3 at t-2 h (1st interval) ∆ID00
3 (t− 2h)

DA− ID3 at t-2 h (2nd interval) ∆ID15
3 (t− 2h)

DA− ID3 at t-2 h (3rd interval) ∆ID30
3 (t− 2h)

DA− ID3 at t-2 h (4th interval) ∆ID45
3 (t− 2h)
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Table 3: Forecast error feature labels.

Description Labels

Solar Error [MW] (1st interval) Solar Error 00

Solar Error [MW] (2nd interval) Solar Error 15

Solar Error [MW] (3rd interval) Solar Error 30

Solar Error [MW] (4th interval) Solar Error 45

Load Error [MW] (1st interval) Load Error 00

Load Error [MW] (2nd interval) Load Error 15

Load Error [MW] (3rd interval) Load Error 30

Load Error [MW] (4th interval) Load Error 45

Wind Error [MW] (1st interval) Wind Error 00

Wind Error [MW] (2nd interval) Wind Error 15

Wind Error [MW] (3rd interval) Wind Error 30

Wind Error [MW] (4th interval) Wind Error 45
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Table 4: Day-ahead ramping feature labels.

Description Labels

Solar DA solar ramp

Wind DA wind ramp

Load DA load ramp

Total power generation DA total gen ramp

Import/export DA import/export ramp

prices are well studied within the literature [63, 37], there is no evaluation

of impact factors for the difference between the two prices. The previous

Section lists a number of possible input features. However, the true effect

on the realization of the price differences remains unknown. This work uses

XAI to find the most impactful input features. In particular, the explanatory

power of SHAP-values is used to quantify the impact of each input feature

and, thus, make informed decisions for the feature set selection.

Given a model f(y) with feature vector y, the SHAP-value approach [40]

decomposes each model prediction into the contributions of the individual

features:

f(y) = φ0 +
∑
i

φi(yi; f), (6)

where φ0 = EY (f(y)) is a constant offset and φi are the SHAP-values of

the respective input features yi ∈ y. The SHAP-value decomposition en-
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sures consistent interpretability, and the individual SHAP-values quantify

the contribution of each input feature towards the model output value. The

SHAP value method is designed specifically to quantify the impact of each

input feature considering all possible (nonlinear) combinatorial effects repre-

sented in the model f(y). Hence, SHAP values are not restricted to simple

marginal feature perturbations under the ceteris parbus assumption. They

capture the contribution of a given feature for all possible coalitions of other

features in a consistent way, such that there is no possibility for missing

combinatorial effects of different features changing the model outputs.Thus,

the SHAP value method evaluates how each feature impacts the effects of

the other features on the model output. In the supplementary material, we

provide more information on the SHAP-value method. For a detailed intro-

duction, the reader is referred to the original work by [40].

SHAP-values provide local information for each element of the data set.

A global measure of the importance of each feature can be obtained by taking

the average of the absolute values:

FIi =
∑

t∈χtest

|φi(y(t); f)| (7)

Here, FIi is the feature importance of the i-th input feature, | · | denotes the

absolute value operator, and χtest is the test set. Notably, SHAP-values do

not inform on the quality of the prediction itself. For a detailed introduction

to SHAP-values and XAI, the reader is referred to [40] and to [42] for an

example application to power grid frequencies.

The SHAP value concept is designed for deterministic regression models.

Thus, SHAP-values cannot be computed for the probabilistic models in Sec-
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tion 3. Instead, this work uses a tree regressor model, which is a popular

choice to compute SHAP-values [40]. In particular, gradient boosted trees

have been shown to offer high levels of interpretability [40, 42]. The gradient

boosted trees are trained on 80% of the days from 2018 and 2019 and the

remaining 20% of days are set aside as a test set. The test set is then used to

score the accuracy of the trained models and to compute the SHAP-values.

As SHAP-values can only be computed for scalar regressors, each of the four

dimensions of the price difference vector is considered separately. For the

SHAP-value analysis, this work uses the ‘SHAP’ library [66] and the gradi-

ent boosted tree implementation in the machine-learning library scikit-learn

[67]. For the test set, the regressor returns R2 of 74%, 60%, 61%, and 63%

for each of the four price differences, respectively.

The SHAP-values are computed using a single regressor for all input fea-

tures. Figure 5, Figure 6, and Figure 7 show the feature importance defined

in Equation (7) for price and time features, the forecast error features, and

the ramping features, respectively. The SHAP-values imply that there are

few highly impactful features and many negligible features. In particular,

the realizations of the price difference vector in the previous hour and the

day-ahead increments show the most significant impact. The previous hour

shows the highest SHAP-values for the same 15 min interval, respectively.

Meanwhile, the absolute day-ahead price, the trigonometric time encoding,

the fossil fuel prices, and the second to last price difference vector realiza-

tions also show negligible impact. Of the forecast errors, only the renewables

forecast errors in the last 15 minute interval show considerable impact. Note

that using hour-ahead forecasts may change the feature importance for the
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Figure 5: SHAP-values [40] of the price difference vector for the price and time features.

DA: day-ahead price, ∆DA+/−: day-ahead increments ahead and back, sin(t)/cos(t):

trigonemetric hour encodings, and ∆IDXX
3 : price difference at given hour and 15min

interval.
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Figure 6: SHAP-values [40] of the price difference vector for the forecast error features.

Solar, Wind, and Load: forecast errors at given hour and 15min interval.
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Figure 7: SHAP-values [40] of the price difference vector for the day-ahead ramping fea-

tures. Day-ahead ramps for solar, wind, load, total power generation, and import and

export balances.
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forecast errors. However, the small difference between the hour-ahead fore-

casts and the realizations combined with the low feature importance of the

proxy indicate that considering the hour-ahead forecast is unlikely to cause

significant changes. The ramping features mostly impact the first and the

fourth interval in the price difference vector. Thus, the ramps mostly impact

the orientation of the increasing or decreasing pattern in the data. Notably,

the overall impact of the ramping features is minor.

In summary, the SHAP-value analysis indicates that the day-ahead in-

crements and the realization of the previous hour are the most informative

as input features to the models in Section 3. The analysis further suggests

that the performance of models trained to predict the price difference is in-

dependent of most external impact factors. For instance, oil and gas prices

have negligible feature importance for the price differences. Intraday trad-

ing decisions are made in situations of immediate requirement rather than a

planning situation. Thus, the differences to the day-ahead prices are not af-

fected by fuel prices. Still, electricity markets are continuously evolving, and

the SHAP results in this study do not necessarily translate to other times.

For an analysis of the Pearson correlation of the impact features, see the

supplementary material of this work.

5. Numerical experiments

This Section applies the different probabilistic modeling approaches to

predict the price difference vector distribution. Each model is trained on

the data set from January 2018 to June 2019 [45], and the month of July

2019 is used as a test set. The 24 h × 31-day test set results in 744 test
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intervals. Note that July 1st, 2019, was a Monday. To preprocess the data

and avoid complications from the heavy-tailed distributions [29], the data is

transformed using the probability integral transform discussed in [68], which

renders the data in a Gaussian form. The normalizing flow and the Gaussian

regression are trained via log-likelihood maximization over 500 epochs with a

batch size of 128 using the python-based machine-learning library TensorFlow

version 2.8.0 [69]. The Gaussian copula uses the quantile regression in the

‘statsmodels’ python library [59]. For details on the implementation of the

models, see the supplementary material. One hundred samples are drawn for

each hour in the test set and used to compute the different metrics outlined

in Section 2. Sections 5.1 and 5.2 use the full set of input features derived in

Section 4.1. Section 5.3 performs an empirical investigation of the impact of

the different groups of input features.

5.1. Prediction intervals

This Section analyzes the forecasted distributions by investigating the

50% and 90% prediction intervals. The intervals are estimated by computing

the respective quantiles of the drawn samples for each time step and then

adding the day-ahead price of the given hour to reverse the difference in

Equation (1).

Figure 8 shows the predicted mean, the 50%, and 90% prediction inter-

vals, and the intraday price realization for the first four days in the test

month of July 2019. The Figure shows the results estimated from proba-

bilistic forecasts from the normalizing flow (top), the selection of historical

data (second from top), the Gaussian copula (third from top), and the Gaus-

sian regression (bottom). For the presented test days, the normalizing flow
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Figure 8: Comparison of probabilistic forecasts by the normalizing flow, the informed

selection of historical data, The Gaussian copula, and the Gaussian regression model to

the actual realization (black line) for the first five days in July 2019. The probabilistic

forecasts are visualized in terms of the median (red line) and the 90% and 50% quantiles

(shaded areas), respectively. Note the truncated y-axis for the Gaussian copula. Training

data from January 2018 to June 2019 [45]. Results generated with all conditional inputs

derived in Section 4.1.
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prediction intervals enclose the realizations for most of the time steps, and

the forecasted mean identifies the realized trends well, with very few excep-

tions. The selection of historical data reflects the trends moderately well and

portrays wider prediction intervals compared to the normalizing flow. The

Gaussian copula and the Gaussian regression often fail to identify the correct

trends and do not fit the realizations as tightly as the normalizing flow. In

particular, the Gaussian copula results in extensive prediction intervals that

show vast peaks for the 90% prediction interval. Compared to the other

approaches, the normalizing flow performs significantly better in identifying

the trends and keeping narrow prediction intervals. Overall, the normalizing

flow yields the sharpest prediction intervals, while the Gaussian copula shows

low sharpness.

On the first day shown in Figure 8, there is a significant peak in the ID3

price realization. This type of extreme event may occur due to unforeseen

incidences in the markets, such as unplanned changes in the operation of large

consumers or suppliers. Notably, the normalizing flow is the only approach

that captures this peak. The supplementary material shows the prediction

intervals for other peak days in the test month that confirm the normalizing

flows’ ability to capture the price peaks.

Table 5 shows the percentage of time steps in the test set that lie within

the 50% and 90% prediction interval, respectively. All approaches show con-

servative results for both prediction intervals, i.e., the actual percentage of

realizations within the prediction intervals is higher than the selected prob-

ability. Thus, all approaches yield reliable prediction intervals. The supple-

mentary material also lists the percentage of realizations within the predic-
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Table 5: Percentage of realizations within 50% and 90% prediction intervals (PI).

PI 50% PI 90%

Normalizing Flow 59.4% 93.5%

Historical 62.1% 95.5%

Copula 61.6% 96.0%

Gaussian 54.9% 90.2%

tion intervals for each of the four time steps of the price difference vector.

The results show that the multivariate approach is able to predict all four

dimensions well and that there is no deterioration of the prediction accuracy

for the later time steps.

In summary, the normalizing flow shows the best results with sharp pre-

diction interval presented in Figure 8 and reliable results in Table 5. The

selection of historical data shows surprisingly good results but has poor

sharpness in the prediction intervals due to the missing conditional input

information. The Gaussian copula results in prediction intervals with poor

sharpness and extreme peaks that are likely a result of a poor quantile re-

gression of the tails of the price difference distribution. By overestimating

the tails in the inverse CDF, the Gaussian copula samples a higher share of

outliers than the actual distribution. The high reliability indicated in Table 5

comes at the cost of poor sharpness. Finally, the Gaussian regression predicts

14 values for the mean vector and a lower-triangular covariance matrix [57].

Likely, this number is too high to achieve good fits in the regression model,

and instead, the training regresses to constant outputs.
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Figure 9: Energy score [54, 52] of the normalizing flow (“Normalizing Flow”), the selec-

tion of historical data (“Historical”), the Gaussian copula (“Copula”), and the Gaussian

regression (“Gaussian”) for each hour in test month of July 2019 (left) and box plot [55] of

the overall distribution for each model (right). Training data from January 2018 to June

2019 [45]. Conditional inputs as derived in Section 4.1.

5.2. Energy and variogram score

Figure 9 shows the energy score for each model and each hour of the test

month (left), as well as box plots of the overall energy score distributions

(right). The Gaussian regression performs only marginally better than the

historical selection. As shown in Figure 8, the Gaussian regression struggles

to identify the correct trends, and the historical selection shows wider predic-

tion intervals, i.e., both approaches show weaknesses that lead to an increase

in the energy score in different ways. The Gaussian copula shows signifi-

cantly worse results than the other forecasting models. As already observed

in Figure 8, the Gaussian copula results in extensive prediction intervals and

fails to identify the intraday price patterns. Thus, the large energy scores

in Figure 9 confirm the qualitative observations from Figure 8. Finally, the

normalizing flow shows the lowest energy score, i.e., it provides the most re-
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Figure 10: Variogram score [53] of the normalizing flow (“Normalizing Flow”), the selec-

tion of historical data (“Historical”), the Gaussian copula (“Copula”), and the Gaussian

regression (“Gaussian”) for each hour in test month of July 2019 (left) and box plot [55] of

the overall distribution for each model (right). Training data from January 2018 to June

2019 [45]. Conditional inputs as derived in Section 4.1.

liable predictions while maintaining sharp prediction intervals with a diverse

set of samples.

In general, the energy scores over time in the case of all methods show rare

incidences of extreme price peaks, e.g., on the first day and at the beginning

of the last quarter of the month. Notably, however, the normalizing flow

shows the best approximation of these extreme events, e.g., for the price

peak on the first day of the test month shown in Figure 8 and the other peak

days shown in the supplementary material.

Next, the variogram score is used to compare whether the different mod-

els can identify the correlation between the dimensions. Figure 10 shows the

variogram score for each model and each hour of the test month (left), as

well as box plots of the overall distributions (right). Note that the y-axis

of the right of Figure 10 is truncated to allow for better visualization of the
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distributions. Similar to the energy score results, the normalizing flow shows

the best results, while the Gaussian regression performs approximately equal

to the historical selection. The Gaussian copula appears to miss large parts

of the correlation and shows the worst variogram scores. The flexibility of

the normalizing flow allowed the model to learn the correlation between the

four time steps in the price difference vector better than any other considered

approach. In particular, the days with extreme price peaks result in consis-

tently low variogram scores for the normalizing flow, while all other models

result in spiking variogram scores. In the supplementary material, we show

the evaluations of energy score and variogram score over a longer period from

July to December 2019. The results confirm the observations described here.

In conclusion, the flexibility of the normalizing flow can describe the non-

trivial distribution of the considered price differences, as highlighted by both

the energy scores and the variogram scores for the test month. Furthermore,

the combination with external impact factors leads to a significant improve-

ment over the historical selection. Meanwhile, the Gaussian copula results in

erroneous trends and inflated prediction intervals, and the Gaussian regres-

sion shows no advantage compared to the selection of historical data.

5.3. Significance of external factors

Up to this point, it remains unclear which external features contribute

to the performance of the normalizing flow predictions. The SHAP-value

analysis in Section 4.2 has provided first insights, albeit for a different deter-

ministic prediction model. This Subsection now compares the performance

of the normalizing flow using different sets of input features. Figure 11 shows

box plots of the energy score and variogram score distributions over the test
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Figure 11: Energy score [54, 52] and variogram score [53] of normalizing flow predictions

using different sets of external factors. Note the truncated y-axis. Training data from

January 2018 to June 2019 [45] and July 2019 as the test set.
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month for samples generated using the normalizing flow with the different

groups of input features in comparison to the selection of historical data.

Note the truncated y-axis to highlight the majority parts of the distribu-

tions.

The energy score results confirm the observations from the SHAP-value

analysis in Section 4.2. The combination of the previous realization of the

price difference vector and the day-ahead increments (“∆ID3(t-1h) & ∆DA”)

results in the largest improvement. The forecast errors (“Forecast errors”)

lead to a moderate improvement, while the ramping features (“Ramping”)

only result in a minor improvement of the energy score compared to the

historical selection (“Historical”). Notably, the combination of all external

factors (“All”) achieves an energy score marginally below the combination

of the previous realization of the price difference vector and the day-ahead

increments.

The variogram score confirms the observations from the energy score.

Except for the combination of all external factors (“All”) and the combination

of the previous realization of the price difference vector and the day-ahead

increments (“∆ID3(t-1h) & ∆DA”), all inputs lead to approximately equal

results compared to the informed historical selection.

In conclusion, the combination of the previous realization of the price dif-

ference vector and the day-ahead increments has by far the strongest impact

on the performance of the probabilistic forecasts and appears to be sufficient

to achieve high-quality prediction results. However, the normalizing flow can

still extract additional information from the remaining external factors.

[65] and [29] argue that the intraday markets are not efficient in the
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sense of the efficient-market hypothesis as there are strong relations between

the current and previous realizations. The results of this work confirm this

observation.

5.4. Discussion

The analysis in this Section shows promising results that indicate valu-

able density forecasts of the price difference vector by the normalizing flow

using appropriate external input features. Both the Gaussian copula and

the Gaussian regression show weaknesses and fail to improve on the results

of the informed historical selection suggesting they are not suitable predic-

tion methods. Figure 11 shows that only the knowledge of the realizations

in the previous hour and the day-ahead increments offers a significant ad-

vantage over using the informed selection of historical data. Hence, lead

times of multiple hours rescind the advantage of the normalizing flow over

the informed historical selection. In conclusion, the normalizing flow yields

high-quality density forecasts for short lead times. If the available informa-

tion is limited, the selection of historical price differences based on the hour

of the day appears to be sufficient.

6. Conclusion

This work proposes a modeling approach for probabilistic forecasting of

intraday electricity prices in the German EPEX spot market. The novel

approach captures the strong relation between day-ahead and intraday prices

by assuming fixed day-ahead prices and predicting the difference between the

two price time series. Furthermore, the model captures the hourly patterns of
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fluctuation of the intraday prices around the day-ahead prices by considering

each day-ahead trading interval as a four-dimensional joint distribution.

Normalizing flow, a non-parametric distribution model, is used to learn

the proposed four-dimensional distribution of price differences and includes

external input factors to form a conditional density forecast. The proposed

model yields a complete end-to-end approach for multivariate density esti-

mation and probabilistic regression that does not require any a priori as-

sumptions about the data.

Compared to a selection of historical data and other multivariate prob-

abilistic models, namely the Gaussian copula and multivariate Gaussian re-

gression, the normalizing flow returns the most reliable and sharpest predic-

tions. Using methods from XAI and careful performance analysis, the role

of different input features has been analyzed in detail. In summary, the nor-

malizing flow best identifies the trends of the intraday prices and shows the

narrowest prediction intervals.
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Nomenclature

Symbol Description

f(y) Deterministic forecasting model

FI Feature importance

N Number of samples

PRE
t Power values RE ∈

{Solar, Wind, Load}

P̂RE
t Forecast of renewable electricity

∆PRE
t Forecast error of renewable electric-

ity

T Invertible neural network

JT−1 Jacobian of T−1

T̂ Day-ahead trading interval T̂ = 4

xt Value at time step t

x̂t Sample at time step t

x,y Data vector

ẑ Gaussian sample

x̂, ŷ Sample of data vector

y External input factors

ID3 Intraday price

ID00
3 , ID15

3 , ID30
3 , ID45

3 Quater hour steps of intraday prices

DA Day-ahead price

∆ID3 4D vector of price difference

ϕ Multivariate standard Gaussian

φ SHAP value

NX|Y (x;µX(y),ΣX(y)) Conditional Gaussian distribution

pX|Y (x|y) Conditional PDF of X given Y

p∆ID3|Y (∆ID3|y) Conditional PDF of ∆ID3 given Y

NX|Y Gaussian distribution with mo-

ments predicted via inputs Y

µX(y) Neural network mean value predic-

tor

ΣX(y) Neural network covariance matrix

value predictor

γ Variogram order (typically γ = 0.5)
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derstanding electricity prices beyond the merit order principle using ex-

plainable ai, arXiv preprint arXiv:2212.04805 (2022).

[38] D. Gunning, Explainable artificial intelligence (xai), Defense advanced

research projects agency (DARPA), and Web 2 (2) (2017) 1.

[39] E. Tjoa, C. Guan, A survey on explainable artificial intelligence (XAI):

Toward medical XAI, IEEE Transactions on Neural networks and Learn-

ing Systems 32 (11) (2020) 4793–4813.

[40] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair,

R. Katz, J. Himmelfarb, N. Bansal, S.-I. Lee, From local explanations

to global understanding with explainable AI for trees, Nature machine

intelligence 2 (1) (2020) 56–67.
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