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A B S T R A C T

Volatile electricity prices make demand response attractive for processes that can modulate their production
rate. However, if nonlinear dynamic processes must be scheduled simultaneously with their local multi-energy
system, the resulting scheduling optimization problems often cannot be solved in real time. For single-input
single-output processes, the problem can be simplified without sacrificing feasibility by dynamic ramping
constraints that define a derivative of the production rate as the ramping degree of freedom. In this work, we
extend dynamic ramping constraints to flat multi-input multi-output processes by a coordinate transformation
that gives the true nonlinear ramping limits. Approximating these ramping limits by piecewise affine functions
gives a mixed-integer linear formulation that guarantees feasible operation. As a case study, dynamic ramping
constraints are derived for a heated reactor-separator process that is subsequently scheduled simultaneously
with its multi-energy system. The dynamic ramping formulation bridges the gap between rigorous process
models and simplified process representations for real-time scheduling.
1. Introduction

Reducing greenhouse gas emissions requires increased renewable
electricity production that, however, gives a fluctuating supply. This
fluctuating supply can be compensated by consumers that react to
time-varying electricity prices by shifting their demand in time in
a so-called demand response (DR) (Zhang and Grossmann, 2016).
DR can be attractive for energy-intensive production processes with
the flexibility to modulate their production rate. To exploit the DR
potential, a scheduling optimization is needed, which typically de-
termines operational set-points for a time horizon in the order of
one day (Baldea and Harjunkoski, 2014). However, such a scheduling
optimization is computationally challenging for nonlinear processes
that exhibit scheduling-relevant dynamics. The scheduling optimiza-
tion becomes even more difficult if processes do not only consume
electricity but also heating or cooling as these processes need to be
scheduled simultaneously with the local multi-energy supply system
(often also referred to as utility system) (Leenders et al., 2019). Local
multi-energy supply systems bring integer on/off decisions into the
scheduling optimization, especially as they often consist of multiple
redundant units (Voll et al., 2013). Thus, the simultaneous scheduling
optimization problem usually is a nonlinear mixed-integer dynamic
optimization (MIDO) problem (Baader et al., 2022c).
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Traditionally, such challenging scheduling MIDO problems are sim-
plified by introducing static ramping constraints that define the rate of
change of the production rate 𝜌 as degree of freedom 𝜈 and limit 𝜈 with
constant ramping limits 𝜈min, 𝜈max, see e.g., (Carrion and Arroyo, 2006;
Mitra et al., 2012; Adamson et al., 2017; Hoffmann et al., 2021; Zhou
et al., 2017):

𝜌̇ = 𝜈 with 𝜈min ≤ 𝜈 ≤ 𝜈max (1)

If additionally, the nonlinear energy demand of the production pro-
cess is approximated as a piecewise-affine (PWA) function, the com-
plete problem can be reformulated as a mixed-integer linear program
(MILP) (Schäfer et al., 2020).

Traditional ramping constraints, however, have two shortcomings:
They are restricted to (i) first-order dynamics and (ii) constant ramping
limits. To tackle both shortcomings, we proposed high-order dynamic
ramping constraints in our previous publication (Baader et al., 2022a).
These high-order dynamic ramping constraints limit the 𝛿-th derivative
of the production rate 𝜌 and use limits 𝜈min, 𝜈max which are functions
of the production rate and its time derivatives:

𝜌(𝛿) = 𝜈 with 𝜈min (𝜌, 𝜌̇,… , 𝜌(𝛿−1)
)

≤ 𝜈 ≤ 𝜈max (𝜌, 𝜌̇,… , 𝜌(𝛿−1)
)

(2)
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Fig. 1. A MIMO process that can vary its production rate 𝜌 and thus its energy
demand while additional control inputs 𝐮 are available to control further process
outputs variables 𝐲.

Dynamic ramping constraints allow to represent energy-intensive pro-
cesses better than static ones due to their ability to account for high-
order dynamics and non-constant ramping limits that depend on the
process state. In Baader et al. (2022a), we demonstrated that dynamic
ramping constraints can achieve solutions of the scheduling optimiza-
tion problem that are close to the solutions of the original nonlinear
MIDO problem while allowing to formulate MILPs that can be solved
sufficiently fast for real-time scheduling. Moreover, we presented a
method to derive dynamic ramping constraints rigorously for the spe-
cial case of single-input single-output (SISO) processes that are exact
input-state linearizable. However, this case is quite restrictive, and the
question remained how to derive dynamic ramping constraints for more
general processes. In particular, it was open how to apply the dynamic
ramping method to multi-input multi-output (MIMO) processes that
have a variable production rate 𝜌 while, at the same time, other
output variables 𝐲 such as temperatures and concentrations need to be
controlled using a set of control inputs 𝐮 (Fig. 1).

The present publication extends the dynamic ramping approach to
MIMO processes and presents a method to derive dynamic ramping
constraints rigorously for differentially flat MIMO processes. In simple
words, a MIMO process with 𝑚 inputs is differentially flat if an output
vector 𝝃 of the same size 𝑚 exists such that all process states and inputs
can be given as a function of the output 𝝃 and its 𝛽 time derivatives 𝝃̇,
. . . , 𝝃(𝛽) (Fliess et al., 1995; Rothfuß, 1997; Rothfuß et al., 1996). We
make use of the fact that a flat nonlinear model can be transformed
to a linear model (Fliess et al., 1995). However, constraints that are
linear for the original model, e.g., bounds on inputs, are nonlinear
for the transformed model. In other words, a nonlinear model with
linear constraints is transformed into a linear model with nonlinear
constraints. Approximating the nonlinear bounds to the safe side with
piecewise-affine functions allows us to formulate a MILP, whose solu-
tion is guaranteed to be feasible also for the non-approximated version.
Note that for SISO processes, flatness is equivalent to exact input-state
linearizability (Adamy, 2014), which was the main assumption in our
previous work (Baader et al., 2022a). For MIMO processes, exact input-
state linearizability with static state transformation is a special case of
flatness (Adamy, 2014).

The remaining paper is structured as follows: In Section 2, the
considered demand response optimization problem and the dynamic
ramping constraints are introduced. In Section 3, a method is presented
to derive dynamic ramping constraints for flat MIMO processes. In Sec-
tion 4, a case study is presented. Section 5 provides further discussion
and Section 6 concludes the work.

2. Dynamic mixed-integer linear scheduling with ramping con-
straints

This section briefly introduces the simultaneous scheduling opti-
mization problem (P) of flexible processes represented by dynamic
ramping constraints and multi-energy supply systems. This problem is
2

a mixed-integer dynamic optimization (MIDO) problem with linear and
piecewise affine (PWA) functions. We discretize time through colloca-
tion on finite elements (Biegler, 2010) to convert the MIDO problem
(P) to a MILP. The size of the final MILP problem is proportional to
the number of discretization points. Note that all decision variables
𝝌 =

(

𝜈, (𝐐process
dem )𝑇 , 𝜌, 𝑆,𝛷energy, (𝐐in)𝑇 , (𝐐out)𝑇 , (𝛥𝐏)𝑇 , 𝐳𝑇on

)𝑇
, which are

ntroduced in the following, are functions of time 𝑡. Still, we do not
tate time dependency explicitly to ease readability. The problem (P)
ithout time discretization reads:

min
𝝌∈[𝝌 𝑙 ,𝝌𝑢]

𝛷energy(𝑡𝑓 ) (Pa)

s.t. Dynamic ramping constraints (Pb)

Process energy demand model (Pc)

Product storage: 𝑆̇ = 𝜌 − 𝜌nom ∀𝑡 ∈ T (Pd)

Energy costs: 𝛷̇energy =
∑

𝑒∈E
𝑝𝑒

⎛

⎜

⎜

⎝

∑

𝑖∈Ccons
𝑒

𝑄in
𝑖 + 𝛥𝑃𝑒

⎞

⎟

⎟

⎠

∀𝑡 ∈ T (Pe)

Energy conversion: 𝑄out
𝑖 = ℎPWA

𝑄out
𝑖

(𝑄in
𝑖 ) ∀𝑖 ∈ C, ∀𝑡 ∈ T (Pf)

Minimum part-load : 𝑧on
𝑖 𝑄

min
𝑖 ≤ 𝑄out

𝑖 ≤ 𝑧on
𝑖 𝑄

max
𝑖 , ∀𝑖 ∈ C, ∀𝑡 ∈ T

(Pg)
Balances: 𝑄process

dem,𝑒 +𝑄inflexible
dem,𝑒 =

∑

𝑖∈Csup
𝑒

𝑄out
𝑖 + 𝛥𝑃𝑒, ∀𝑒 ∈ E, ∀𝑡 ∈ T

(Ph)

The objective is to minimize the cumulative energy costs 𝛷energy at final
time 𝑡𝑓 . The lower and upper bounds of the decision variables are 𝝌 𝑙
and 𝝌𝑢. In the following paragraph, we discuss the dynamic ramping
constraints (Pb) and the process energy demand model (Pc) in detail.
The remaining constraints (Pd) to (Ph) are standard constraints (Schäfer
et al., 2020; Sass et al., 2020) and discussed in more detail in our
previous publication (Baader et al., 2022a). Thus, we only briefly
introduce the symbols here. All decision variables are functions of time
𝑡 ∈ T although not stated explicitly to ease readability. The product
torage with level 𝑆 is filled by the production rate 𝜌 and emptied
ith the nominal production 𝜌nom (Pd). The rate of change of the

energy costs 𝛷energy is the price of an energy form 𝑒, 𝑝𝑒 times the input
power 𝑄in

𝑖 of energy conversion units consuming 𝑒, C𝑒, and the power
exchanged with the grid 𝛥𝑃𝑒. The set E in (Pe) covers all considered
energy forms. For the energy conversion of a components 𝑖 in the set
of components C, the output power 𝑄out

𝑖 is given as piecewise affine
function ℎPWA

𝑄out
𝑖

of the input power 𝑄in
𝑖 (Pf). Additionally, minimum part-

load is modeled with a binary variable 𝑧on
𝑖 to ensure the output power

𝑄out
𝑖 is either zero or between minimum part-load 𝑄min

𝑖 and maximum
power 𝑄max

𝑖 (Pg). Finally, the energy balances state that the demands
of the flexible process 𝑄process

dem,𝑒 and the demands of other inflexible
processes 𝑄inflexible

dem,𝑒 have to be satisfied by the output 𝑄out
𝑖 of energy

conversion units supplying energy 𝑒, collected in set Csup
𝑒 , and power

from the grid 𝛥𝑃𝑒 (Ph).
In our previous publication (Baader et al., 2022a), we only derived

dynamic ramping constraints (Pb) for processes with a single input.
We, therefore, only had to constrain a single time derivative of the
production rate 𝜌 with order 𝛿, which we defined as the ramping
degree of freedom 𝜈 = 𝜌(𝛿). In the present contribution, we consider
multiple inputs 𝐮 and can potentially have constraints on all considered
derivatives of the production rate 𝜌(𝛾) with 𝛾 = 1,… , 𝛿 and the integer
𝛿 being the order of the highest time derivative that is constrained by
input bounds. For instance, the bounds of input 𝑢1 could directly limit
the first derivative of the production rate, 𝜌̇, whereas the bounds on
input 𝑢2 could limit the second derivative of the production rate, 𝜌(2),
directly and only influence the first derivative, 𝜌̇, through the integra-
tion. The generalized dynamic ramping constraints (DRCs) developed
in this publication therefore read:

𝜌(𝛿) = 𝜈 (DRCa)
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𝜌̇min(𝜌) ≤ 𝜌̇ ≤ 𝜌̇max(𝜌) (DRCb)
⋮

𝜌(𝛾)
)min (𝜌, 𝜌̇,… , 𝜌(𝛾−1)

)

≤ 𝜌(𝛾) ≤
(

𝜌(𝛾)
)max (𝜌, 𝜌̇,… , 𝜌(𝛾−1)

)

(DRCc)
⋮

𝜈min (𝜌, 𝜌̇,… , 𝜌(𝛿−1)
)

≤ 𝜈 ≤ 𝜈max (𝜌, 𝜌̇,… , 𝜌(𝛿−1)
)

(DRCd)

Still, only the highest considered time derivative 𝜌𝛿 is a degree of
freedom and thus defined as the ramping degree of freedom 𝜈.

The limits
(

𝜌(𝛾)
)min,

(

𝜌(𝛾)
)max as well as 𝜈min, 𝜈max are in general

nonlinear functions that we derive by coordinate transformation (Sec-
tion 3). To incorporate the dynamic ramping constraint into an MILP
formulation, the true nonlinear limits are approximated by piecewise-
affine (PWA) functions for all considered derivatives 𝛾 = 1,… , 𝛿
because PWA functions allow us to formulate a mixed-integer linear
scheduling problem. These piecewise-affine functions need to be con-
servative such that they prohibit constraint violation with respect to
the true nonlinear limits to guarantee that the chosen trajectory for 𝜌
satisfies all bounds on inputs and states. Accordingly, the approxima-
tions of

(

𝜌(𝛾)
)min and 𝜈min must always by greater than or equal to the

true nonlinear limits and the approximations of
(

𝜌(𝛾)
)max and 𝜈max must

always be lower than or equal to the real nonlinear limits. Choosing
the quality of the approximations allows us to explicitly balance the
achievable flexibility range against the computational burden.

The process energy demand 𝑄dem,𝑒 (cf. Eq. (Pc)) for an energy form 𝑒
is modeled as a function of the production rate and its time derivatives:

𝑄process
dem,𝑒

(

𝜌, 𝜌̇,… , 𝜌(𝛿−1), 𝜈
)

(3)

Similar to the DRC, a piecewise-affine function is chosen for 𝑄process
dem,𝑒 to

achieve an MILP formulation.
The problem formulation (P) with DRCs captures a larger share

of the dynamic flexibility range of processes than static ramping con-
straints can do while still allowing to formulate a mixed-integer linear
program. However, to choose suitable piecewise-affine ramping limits,
the true nonlinear limits of the process need to be derived or approx-
imated. In the following section, we show how these limits can be
derived rigorously for MIMO processes that are differentially flat.

3. Deriving dynamic ramping constraints

In Section 3.1, necessary assumptions are stated and then our
approach is presented in Section 3.2.

3.1. Assumptions

1. The process degrees of freedom are divided into a control input
vector 𝐮 and the variable production rate 𝜌. The process model
is a system of ordinary differential equations given by:

𝐱̇ = 𝐟 (𝐱,𝐮, 𝜌) (4)

with state vector 𝐱 ∈ R𝑛, and a nonlinear right-hand side
function 𝐟 (𝐱,𝐮, 𝜌). We assume that there are no further inputs
or disturbances to the process.

2. The control input vector 𝐮, and the production rate 𝜌 are
bounded by minimum and maximum values 𝐮min, 𝐮max, and 𝜌min,
𝜌max, respectively. Similarly, the states 𝐱 have to be maintained
within bounds 𝐱min, 𝐱max.

3. The process (4) is flat. That is, the process has one or multiple
flat output vectors 𝝃. An output vector 𝝃 is flat if it satisfies three
conditions (Fliess et al., 1995; Rothfuß, 1997; Rothfuß et al.,
1996):

(a) The flat output vector can be given as a function 𝝓 of
states 𝐱, inputs 𝐮, production rate 𝜌, and time derivatives
of 𝐮 and 𝜌:

(

̇ (𝛼) (𝜅))
3

𝝃 = 𝝓 𝐱,𝐮,𝐮,… ,𝐮 , 𝜌, 𝜌̇,… , 𝜌 (5a)
with finite integer numbers 𝛼, 𝜅. The function 𝝓 can be
seen as a transformation from the original state and input
space to the flat output space. Often, it is possible to
choose flat outputs that have a physical meaning, e.g., the
conversion of a reactor, and that are a function of the
states 𝐱 only (Adamy, 2014).

(b) A backtransformation from the flat output and its deriva-
tives to the original states 𝐱 and inputs 𝐮 can be found.
Accordingly, the system states 𝐱 and inputs 𝐮 can be given
as functions 𝝍1, 𝝍2 of the flat outputs 𝝃, the production
rate 𝜌, and a number of time derivatives of 𝝃 and 𝜌:

𝐱 = 𝝍1
(

𝝃, 𝝃̇,… , 𝝃(𝛽−1), 𝜌, 𝜌̇,… , 𝜌(𝜁−1)
)

(5b1)

𝐮 = 𝝍2
(

𝝃, 𝝃̇,… , 𝝃(𝛽), 𝜌, 𝜌̇,… , 𝜌(𝜁 )
)

(5b2)

with finite integer numbers 𝛽, 𝜁 .
(c) The components of 𝝃 are differentially independent (Roth-

fuß, 1997). Consequently, they do not fulfill any differen-
tial equation:

𝝁(𝝃, 𝝃̇,… , 𝝃(𝛽)) = 𝟎 (5c)

Condition (5c) is satisfied if condition (5b) is satisfied,
dim(𝝃) = dim(𝐮) = 𝑚, and rank

(

𝜕𝐟 (𝐱,𝐮,𝜌)
𝜕𝐮

)

= 𝑚, where 𝑚
is the number of inputs (Rothfuß, 1997).

Note: To check conditions (5a)–(5c), a candidate for a flat output
vector 𝝃 is needed. We assume that such a candidate for a flat
output vector 𝝃 can be identified based on engineering intuition.

4. The trajectory of the production rate 𝜌 is determined by the
scheduling optimization. Subsequently, the control input vector
𝐮 ∈ R𝑚 is calculated by an underlying process control.

The flatness-based coordinate transformation is visualized in Fig. 2.
A nonlinear model with linear constraints is transformed into a linear
model with nonlinear constraints. The number of control degrees of
freedom is maintained: While, in the original model, the 𝑚 inputs 𝑢𝑘
(𝑘 = 1,… , 𝑚) are the degrees of freedom, in the linear model, the 𝑚
highest time derivatives of the output components 𝜉(𝛽𝑘)𝑘 (𝑘 = 1,… , 𝑚)
are the degrees of freedom (Adamy, 2014; Fliess et al., 1995). The
number of time derivatives 𝛽𝑘 can deviate between the flat output
omponents 𝜉𝑘 (Adamy, 2014; Fliess et al., 1995). In the linear model,
he transformed state vector 𝜩 is formed by the outputs and their time
erivatives (except for the highest time derivative):

=
(

𝜉1,… , 𝜉(𝛽1−1)1 , 𝜉2,… , 𝜉(𝛽2−1)2 ,… , 𝜉𝑚,… , 𝜉(𝛽𝑚−1)𝑚

)𝑇
(6)

The dimension of the transformed state vector 𝜩 is greater or equal
to the dimension of the original state vector 𝐱 (Adamy, 2014; Fliess
et al., 1995). Consequently, the original nonlinear process model is
converted to a linear model consisting of 𝑚 integrator chains. In the
linear model, every flat output 𝜉𝑘 can be varied with a 𝛽𝑘-th order
dynamic independently of the other flat outputs. Note that flatness is a
sufficient condition for controllability of a nonlinear process (Adamy,
2014).

To ease notation in the following, we introduce the ramping state
vector

𝝋 =
(

𝜌, 𝜌̇,… , 𝜌(𝛿−2), 𝜌(𝛿−1)
)𝑇 (7)

and its time derivative

𝝋̇ =
(

𝜌̇, 𝜌(2),… , 𝜌(𝛿−1), 𝜈
)𝑇 . (8)

3.2. Approach

The steps to derive dynamic ramping constraints further discussed
in the following subsections are summarized in Fig. 3: First, a candidate
for a flat output vector is selected based on two necessary flatness

conditions (Section 3.2.1). Assuming this candidate is, in fact, a flat
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Fig. 2. Visualization of flatness-based coordinate transformation showing original nonlinear MIMO process model as introduced in assumption 1 (left), transformations 𝝓,𝝍1 ,𝝍2
as introduced in assumption 3 (gray arrows), and linear MIMO process model in transformed coordinate space as introduced in assumption 3 (right).
Fig. 3. Overview of steps to derive dynamic ramping constraints performed in the respective sections. For the nonlinear MIMO model and the linear MIMO model, all variable
symbols are omitted for clarity as they are identical to Fig. 2. The variables of the ramping SISO model are the production rate 𝜌, its derivatives 𝜌̇,… , 𝜌(𝛿−1), and the ramping
degree of freedom 𝜈.
output, the original nonlinear MIMO process model is transformed
into a linear MIMO model (center of Fig. 3). In this linear model,
the 𝑚 components of the flat output vector 𝜉𝑘 are decoupled such
that the outputs 𝜉𝑘 can be controlled independently of each other
by manipulating the degrees of freedom 𝜉(𝛽𝑘)𝑘 (Fig. 2). However, a
SISO model is needed for the dynamic ramping constraints where the
production rate 𝜌 is controlled by manipulating the ramping degree of
freedom 𝜈. Thus, second, the flat output components 𝜉𝑘 are coupled by
choosing an operating strategy 𝝅(𝜌) that defines every 𝜉𝑘 as function
of the production rate 𝜌 (Section 3.2.2). This coupling reduces the
number of degrees of freedom from 𝑚 to one, leading to a significant
model order reduction. Third, backtransformations are found from the
4

ramping SISO model to the original nonlinear MIMO model, and thus
flatness is proven (Section 3.2.3).

Based on the backtransformations and the ramping SISO model,
the true nonlinear ramping limits are derived from the bounds on
inputs 𝐮 and states 𝐱. After approximating the true nonlinear limits
with piecewise-affine functions, the dynamic ramping constraints are
complete and the problem (P) can be solved as MILP.

3.2.1. Selection of flat output candidate and necessary flatness conditions
First, we propose to apply a necessary condition for flatness from

literature based on a graph representation of the process (Schulze
and Schenkendorf, 2020) to identify a candidate for the flat output
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vector 𝝃 as 𝝓
(

𝐱,𝐮, 𝐮̇,… ,𝐮(𝛼), 𝜌, 𝜌̇,… , 𝜌(𝜅)
)

(compare to condition (5a)).
As the second necessary condition for flatness, we propose setting
up an equation system that implicitly defines the backtransformation
𝝍 (compare to condition (5b)) and check if this backtransformation
equation system is structurally solvable.

For the graph representation, the process model is represented
as a directed graph in which all states 𝑥𝑖 and inputs 𝑢𝑘 are repre-
sented as vertices 𝑣𝑥𝑖 and 𝑣𝑢𝑘 , respectively (Schulze and Schenkendorf,
2020). If 𝜕𝑓𝑖(𝐱,𝐮)

𝜕𝑥𝑗
is non-zero, there is an edge from vertex 𝑣𝑥𝑗 to vertex

𝑣𝑥𝑖 (Schulze and Schenkendorf, 2020). In other words: If a state 𝑥𝑗
acts on the derivative of another state 𝑥𝑖, an edge is drawn from 𝑥𝑗
to 𝑥𝑖. Similarly, an edge from input 𝑢𝑘 to state 𝑥𝑖 exists, if 𝜕𝑓𝑖(𝐱,𝐮)

𝜕𝑢𝑘
is

on-zero. The necessary condition for a flat output vector 𝝃 is that it
ust be possible to match the 𝑚 output components 𝜉𝑖 to the input

omponents 𝑢𝑖 such that there are 𝑚 input–output pairs with pairwise
isjoint paths through the graph that cover all process states (Schulze
nd Schenkendorf, 2020). An illustrative example for this necessary
ondition is given in the Supplementary Information (SI).

As a starting point, the states which are typically controlled can
e tested as flat output candidates. Typical states to be controlled are
utlet stream compositions, final effluent temperature, or the process
old-up (Jogwar et al., 2009).

Once a flat output vector candidate is identified based on the
raph representation as 𝝃 = 𝝓(𝐱,𝐮, 𝐮̇,…, 𝐮(𝛼), 𝜌, 𝜌̇,… , 𝜌(𝜅)), condition
a is fulfilled. Further, the rank criterion needed for condition 4c can
e checked easily. As a final step to show flatness, existence of the
acktransformations 𝝍1,𝝍2 that give states 𝐱 and inputs 𝐮 as functions
f the flat output 𝝃 and its time derivatives 𝝃̇,… , 𝝃(𝛽) needs to be
hown (condition 4b). To obtain these backtransformations, a nonlinear
ystem of equations needs to be developed with 𝝃 and its derivatives
̇ ,… , 𝝃(𝛽) on the right-hand side and left-hand side functions including
he wanted quantities: states 𝐱, inputs 𝐮, and potentially derivatives of
nputs. To set up the backtransformation, we make use of the fact that
is given by 𝝓

(

𝐱,𝐮, 𝐮̇,… ,𝐮(𝛼), 𝜌, 𝜌̇,… , 𝜌(𝜅)
)

and the derivatives of 𝝃 can
be given as functions of 𝐱, inputs 𝐮, and derivatives of inputs by means
of the total differential. The equation system for the backtransformation
needs to be square such that there are as many equations as there are
unknown states, inputs, and derivatives of inputs. We propose to check
if this nonlinear equation system is structurally solvable by conducting
an analysis similar to the structural index analysis for differential–
algebraic equation systems (Unger et al., 1995) commonly used in
process systems engineering. An example is given in the SI.

3.2.2. Operating strategy
Under the assumption that the flat output candidate identified as

discussed in Section 3.2.1 is, in fact, a flat output, the nonlinear model
can be transformed into a linear model. This linear model is a MIMO
model with 𝑚 degrees of freedom 𝜉(𝛽𝑖)𝑖 and 𝑚 outputs 𝜉𝑖 (Fig. 2). As
discussed above, the linear MIMO is transferred to a SISO ramping
model by coupling the flat output components. To this end, we insert an
operating strategy that gives the value of every flat output as a function
of the production rate 𝜌. This operating strategy differentiates between
two possible types of flat output components: First, flat output com-
ponents might have specifications that should be maintained constant,
such as outlet stream compositions, final effluent temperature, and
the process hold-up (Jogwar et al., 2009). Accordingly, the operating
strategy is to hold such an output 𝜉𝑘 constant at its nominal value such
that 𝜉𝑘 = 𝜉nom

𝑘 holds and thus all time derivatives are zero.
Second, flat output components may be unspecified. For instance,

in our case study, one flat output component is a concentration for
which no specifications are given. As every flat output component
𝜉𝑘 corresponds to one control input, i.e., degree of freedom, 𝑢𝑘, if
specifications are given for 𝑙 outputs, and 𝑙 is smaller than 𝑚, 𝑚 − 𝑙
flat output components remain as degrees of freedom in steady-state.
Thus, the 𝑚 − 𝑙 free flat output component 𝜉 can, in principle, be
5

𝑘

chosen to have any value in steady-state as long as no variable bounds
are violated. To have the optimal steady-state operating points, we
use a steady-state optimization to determine the optimal values 𝜉𝑘 in
advance as a function of the production rate 𝜌 such that 𝜉𝑘 = 𝜋𝑘(𝜌). For
nstance, the objective can be to find the steady-state operating points
hat minimize energy consumption. In our case study, we choose the
lat output component such that the overall heat demand is minimal
or steady-state points (Section 4).

The operating strategy 𝜋𝑘(𝜌) can be any nonlinear function. The
nly requirement is that the function 𝜋𝑘(𝜌) must be differentiable with
espect to 𝜌 sufficiently often so that all derivatives of 𝜉𝑘 which are part
f the backtransformation discussed in the previous section are defined
y the total differential, e.g., 𝜉̇𝑘 =

𝜕𝜋𝑘(𝜌)
𝜕𝜌 𝜌̇, 𝜉(2)𝑘 = 𝜕𝜋𝑘(𝜌)

𝜕𝜌 𝜌(2) + 𝜕2𝜋𝑘(𝜌)
𝜕𝜌2

𝜌̇2.
When all output components with specifications are maintained

at their nominal values and a function 𝜋𝑘(𝜌) is chosen for all other
output components, the operating strategy can be summarized as 𝝃 =
𝝅(𝜌). Consequently, the flat output vector 𝝃 and all relevant time
derivatives 𝝃, 𝝃̇,… , 𝝃(𝛽) (compare to Eq. (5b)) are defined as function
of the production rate 𝜌 and a number of its time derivatives. The
highest time derivative 𝜌(𝛿) that occurs defines the order of the dynamic
ramping constraint (DRC) and the ramping degree of freedom 𝜈 =
𝜌(𝛿). Consequently, the backtransformations 𝝍1,𝝍2 discussed in the
following only depend on the ramping state vector 𝝋 and the ramping
degree of freedom 𝜈.

3.2.3. Backtransformation and reformulation to dynamic ramping con-
straints

First, the flat output vector 𝝃 and its time derivatives 𝝃, 𝝃̇,… , 𝝃(𝛽) are
replaced in the nonlinear equation system for the backtransformation
derived in Section 3.2.1. While 𝝃 is replaced by 𝝅(𝜌), the derivatives
are replaced by building the total differential of 𝝅(𝜌). Next, we solve
the equation system to get 𝐱 = 𝝍1(𝝋) and 𝐮 = 𝝍2(𝝋, 𝜈). It is favorable
to solve the equation system analytically. Still, it is not necessary to
derive the functions 𝝍1,𝝍2 analytically as they can also be evaluated
numerically as long as their solution is unique. In this paper, we use
the computer algebra package SymPy (Meurer et al., 2017) to obtain
analytic functions 𝝍1,𝝍2. Note that it might not be possible to solve
the system of equations because the graphical and structural criteria
proposed in Section 3.2.1 are only necessary flatness conditions. In case
the nonlinear system of equations cannot be solved, one can test other
flat output candidates. If the functions 𝝍1,𝝍2 are found, condition 3b is
fulfilled, and flatness is shown at least locally on the subspace defined
by the operating strategy.

This flat system constitutes one integrator chain with the degree of
freedom 𝜈 that can be chosen arbitrarily at any point in time. Thus,
mathematically, the production rate can be changed infinitely fast by
choosing infinitely high values for 𝜈. However, the real process control
inputs 𝐮 are bounded by maximum and minimum values (assumption
3), and therefore, dynamic ramping constraints (DRCs) are needed to
ensure that the real process inputs are maintained within bounds.

To get the dynamic ramping constraints (DRCs), we consider the
input bounds row by row. For the 𝑘th row, we get

𝑢min
𝑘 ≤ 𝜓2,𝑘(𝜌, 𝜌̇,… , 𝜌(𝛾)) ≤ 𝑢max

𝑘 , (9)

where 𝜌𝛾 is the highest time derivative needed to compute 𝑢𝑘. Eq. (9)
implicitly limits 𝜌𝛾 for given 𝜌, 𝜌̇,… , 𝜌(𝛾−1). These limits can be given as
an explicit function if it is possible to symbolically invert 𝜓2,𝑘 for the
derivative 𝜌(𝛾)𝑘 and thus derive an analytic function 𝜃 of the production
rate 𝜌, derivatives 𝜌̇,… , 𝜌𝛾−1, and the input 𝑢𝑘:

𝜌(𝛾)𝑘 = 𝜃
(

𝜌, 𝜌̇,… , 𝜌𝛾−1, 𝑢𝑘
)

(10)

Inserting 𝑢min
𝑘 , 𝑢max

𝑘 into 𝜃 gives 𝜌(𝛾)min
𝑘 , 𝜌(𝛾)max

𝑘 . Alternatively, the limits
can be derived numerically for given 𝜌, 𝜌̇,… , 𝜌𝛾−1 by sampling different
values for 𝜌(𝛾)𝑘 and evaluating if the resulting 𝑢𝑘 is within the allowed
range.
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Fig. 4. Constraints for ramping degree of freedom 𝜈 as function of production rate 𝜌
for an illustrative case with first-order ramping constraints and two limiting inputs 𝑢1,
𝑢2. For first-order ramping constraints, the ramping state vector 𝝋 is of dimension one
and equal to the production rate 𝜌. Consequently, the limits on the ramping degree of
freedom 𝜈 only depend on 𝜌. The true nonlinear limits caused by the minimum and
maximum values of the two inputs 𝑢1, 𝑢2 are compared to static limits (dotted), linear
limits (dashed) and piecewise-affine (PWA) limits (dashed–dotted). Moreover, a linear
scale-bridging model (SBM) is visualized (compare to discussion in Section 3.3).

Note: Here, we discuss the case of one allowed region for 𝜌(𝛾)𝑘 given
by limits 𝜌(𝛾)min

𝑘 , 𝜌(𝛾)max
𝑘 . In principle, there could be two (or even more)

non-connected allowed regions given by limits 𝜌(𝛾)min,1
𝑘 , 𝜌(𝛾)max,1

𝑘 and
𝜌(𝛾)min,2

𝑘 , 𝜌(𝛾)max,2
𝑘 with 𝜌(𝛾)max,1

𝑘 < 𝜌(𝛾)min,2
𝑘 , as 𝜓2,𝑘 is a general nonlinear

function. In that case, one could either restrict the operating range to
one of the two regions or introduce a binary variable that indicates
which region is active. An illustrative example that can result in two
allowed regions is given in the SI.

Bounds on a state 𝑥𝑘 give an equation which is has the same
structure as Eq. (9). Thus, constraints on states can be treated in the
same way as constraints on inputs.

Finally, the nonlinear ramping limits need to be approximated by
piecewise affine (PWA) functions. This approximation allows to explic-
itly balance the quality of the dynamic ramping constraints against
the computational burden. In contrast to previous work (Baader et al.,
2022a), there can more be several inputs and states limiting the same
derivative of the production rate 𝜌 for the MIMO case. Fig. 4 shows
an illustrative case with first-order ramping and two limiting inputs
𝑢1, 𝑢2. The upper ramping limit is only determined by the maximum
input 𝑢max

1 as the upper limit in the flat system resulting from 𝑢min
2

is always above the limit from 𝑢max
1 . In contrast, the lower ramping

limit is given by an intersection between the lower limits from 𝑢min
1 and

𝑢max
2 , respectively. If static ramping limits are chosen, a large amount

of the feasible region needs to be cut off for the illustrative case in
Fig. 4 (horizontal dotted lines). In contrast, linear (dashed lines in
Fig. 4) and piecewise affine (dashed–dotted lines in Fig. 4) limits allow
to come closer to the true nonlinear limits and thus realize a larger
flexibility range. For the lower ramping limit, piecewise affine limits
can be realized without the addition of binary variables as the feasible
region is convex. However, for the upper limit, the feasible region is
non-convex and binary variables are needed, making the optimization
more computationally challenging.
6

As, in the general case, the limit functions
(

𝜌(𝛾)
)min,

(

𝜌(𝛾)
)max are

multivariate functions, multivariate regression methods, e.g., hinging
hyperplanes (Breiman, 1993; Adeniran and Ferik, 2017; Kämper et al.,
2021), convex region surrogates (Zhang et al., 2016; Schweidtmann
et al., 2021), or artificial neural networks with ReLU activation func-
tions (Grimstad and Andersson, 2019; Lueg et al., 2021), can be used
to find piecewise-affine approximations.

3.3. Comparison to other approaches

Finally, we compare our approach to two other relevant approaches
that integrate scheduling and control by considering a simplified ver-
sion of the process dynamics in scheduling: scale-bridging models (Du
et al., 2015) and data-driven closed-loop models (Kelley et al., 2018).
The difference between the two alternative approaches is that scale-
bridging models explicitly adapt the underlying control to linearize the
closed-loop response (Du et al., 2015) while data-driven closed-loop
models identify the response of the process to a change of the set-
point 𝜌𝑆𝑃 from data (Dias and Ierapetritou, 2016; Diangelakis et al.,
2017; Burnak et al., 2018; Pattison et al., 2016). Thus, data-driven
closed-loop models, in general, identify a nonlinear closed-loop re-
sponse, and scale-bridging models rely on a linearization performed
by the underlying control. This linearization can be achieved by ex-
act input–output linearization control (Du et al., 2015), scheduling-
oriented model-predictive control (Baldea et al., 2015), or by a combi-
nation of a set-point filter and tracking control (Baader et al., 2022c).
For first-order dynamics, the linearized closed-loop response reads

𝜌 + 𝜏𝜌̇ = 𝜌SP (11)

In Eq. (11), 𝜏 is a tunable time constant and 𝜌SP is the set-point
given to the underlying controller. That is, instead of the ramping
degree of freedom 𝜈, the set-point 𝜌SP is the degree of freedom for the
scheduling optimization. To compare the scale-bridging model to our
dynamic ramping constraints, we rearrange Eq. (11) to calculate the
maximum possible rate of change 𝜌̇max as a function of the maximum
set-point 𝜌max

𝑆𝑃 and the minimum rate of change 𝜌̇min as a function of
the minimum set-point 𝜌min

𝑆𝑃 :

𝜌̇max = 1
𝜏
(𝜌max
𝑆𝑃 − 𝜌) (12)

̇min = 1
𝜏
(𝜌min
𝑆𝑃 − 𝜌) (13)

The resulting limits are visualized in Fig. 4 for the natural choice that
the maximum set-point 𝜌max

𝑆𝑃 equals the maximum production rate 𝜌max

and the minimum set-point 𝜌min
𝑆𝑃 equals the maximum production rate

𝜌min. The time constant 𝜏 is chosen such that the rate of change 𝜌̇
demanded by the scale-bridging model is always within limits. The
flexibility range for the scale-bridging model has a parallelogram shape
dictated by Eqs. (12) and (13). Our dynamic ramping constraints can
always match this parallelogram shape by linear ramping limits 𝜈min,
𝜈max. Additionally, dynamic ramping constraints also allow choosing
linear limits with another shape or even piecewise affine limits. Thus
dynamic ramping constraints can consistently perform at least as well
as linear scale-bridging models. Moreover, our analysis could be used
to rigorously choose the time constant 𝜏 of the scale-bridging model.

As stated above, data-driven closed-loop models identify a nonlinear
closed-loop response. Still, if piecewise affine functions approximate
nonlinearities, a MILP formulation is possible, see, e.g., Kelley et al.
(2018) who derive an MILP formulation for Hammerstein-Wiener mod-
els. Thus, data-driven closed-loop models are an alternative to our
dynamic ramping constraints; in particular, they are still applicable
if no mechanistic process model is available or the process is not
flat. If a flat mechanistic process model is available, there are two
conceptual differences between dynamic ramping constraints and data-
driven closed-loop models: First, dynamic ramping constraints have the
theoretical advantage that they can be derived rigorously such that the
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Fig. 5. Case study of reactor-separator process with recycle: States 𝐱 are the concentrations of component 𝐴 and 𝐵, 𝑐𝐴, and 𝑐𝐵 , respectively, and the temperature 𝑇 in the reactor
1) and in the flash (2). Manipulated control inputs 𝐮 are the bottom stream 𝐹𝐵 , the purge stream 𝐹𝑃 , the heat input to the reactor 𝑄1, and the heat input to the flash 𝑄2. The
cheduling degree of freedom is the production rate 𝜌. All other material flow rates are given as functions of 𝐹𝐵 , 𝐹𝑝, and 𝜌, e.g., the reactant stream is equal to the purge 𝐹𝑝 plus
he production rate 𝜌 as no accumulation of material occurs.
Fig. 6. Graph representation for the reactor-separator process with recycle (compare
to Fig. 5). The output 𝝃 = (𝑐𝐴2 , 𝑐𝐵2 , 𝑇2 , 𝑐𝐴1)𝑇 fulfills the necessary condition for a flat
utput.

easibility of the optimized trajectory is guaranteed. Second, dynamic
amping constraints and data-driven closed-loop models lead to concep-
ually different trade-offs between computational burden and accuracy:

hile dynamic ramping constraints reduce the computational burden
y reducing the accuracy of the ramping limits, data-driven closed-
oop models reduce computational burden by reducing the accuracy of
he model prediction. Thus, dynamic ramping constraints compromise
n the feasible region, sacrificing flexibility, and data-driven closed-
oop models compromise on the prediction of the process outputs,
otentially leading to constraint violations or production deviating
rom the schedule.

. Case study: Reactor-separator process with recycle

In this case study, we consider a reactor-separator process with
ecycle consisting of a continuous stirred tank reactor (CSTR) and a
lash (Fig. 5). The production rate 𝜌 can be varied around its nominal
alue 𝜌nom between 𝜌min = 0.8𝜌nom and 𝜌max = 1.2𝜌nom as long as the

nominal production is reached on average over the considered time
horizon. A raw material 𝐴 reacts to the desired product 𝐵, which can
further react to an undesired product 𝐶. The process has 6 differential
states: the concentration of 𝐴, 𝑐 , the concentration of 𝐵, 𝑐 , and
7

𝐴1 𝐵1
the temperature 𝑇1 in the reactor (1) and the analog quantities 𝑐𝐴2,
𝑐𝐵2, 𝑇2, in the flash (2). Apart from the production rate 𝜌, there are
four manipulated variables: the bottom stream 𝐹𝐵 , the purge stream
𝐹𝑝, the heat flow to the reactor 𝑄1, and the heat flow to the flash
𝑄2. The process equations are modified from the textbook example
by Christofides et al. (2011) where 2 CSTRs and a flash are considered.
Though, also the original version (Christofides et al., 2011) fulfills our
assumptions, we decided to modify the example to reduce the number
of states from 9 to 6 to improve readability and clarity.

The model equations comprise component and energy balances
given in the SI.

4.1. Selection of flat output candidate and necessary flatness conditions

A flat output candidate 𝝃 must have 4 components as there are four
control inputs. We first consider the three states of the flash 𝑐𝐴2, 𝑐𝐵2,
and 𝑇2, as they determine the outlet stream, and we assume that spec-
ifications for the outlet stream are given. As fourth output component,
we choose the concentration 𝑐𝐴1 based on the graph representation in
Fig. 6. The four input–output pairs 𝐹𝐵 − 𝑐𝐴2, 𝐹𝑝 − 𝑐𝐵2, 𝑄2 − 𝑇2, 𝑄1 − 𝑐𝐴1
fulfill the necessary condition for a flat output (Fig. 6).

By differentiating the components of the output 𝝃 =
(

𝑐𝐴2, 𝑐𝐵2, 𝑇2, 𝑐𝐴1
)

up to three times, we receive a structurally solvable system of equations
(Table S3 in the SI).

4.2. Operating strategy

For the operating strategy, we assume that the composition and
temperature of the product stream 𝜌 must be maintained constant.
Accordingly, 𝜉1 = 𝑐𝐴2, 𝜉2 = 𝑐𝐵2, 𝜉3 = 𝑇2 must be maintained at their
nominal values 𝜉nom

1 = 0.4539, 𝜉nom
2 = 0.4610, 𝜉nom

3 = 455𝐾. Thereby,
the considered operating region is already significantly reduced.

As there are 4 control inputs, we can maintain the first three flat
output components at their nominal values and still have one degree
of freedom left. Consequently, an operating strategy for the fourth flat
output 𝜉4 = 𝑐𝐴1 can be chosen freely. In a steady-state optimization,
we search for the steady-state operating points that minimize the total
heating 𝑄1 + 𝑄2 and fix 𝜉4 to be a function of the production rate
𝜉4 = 𝜋4(𝜌). Further details on this steady-state optimization are given
in the SI.
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Fig. 7. Limits on the scaled time derivative of the production rate 𝜌̇ over the scaled production rate 𝜌 resulting from the minimum (min) and maximum (max) values of the state
𝑇1 and the inputs 𝐹𝑝, 𝑄2.
𝜌

Table 1
Structural dependency resulting from nonlinear transformation and operating strategy
of states and inputs on the production rate 𝜌 and its time derivatives 𝜌̇ and

(= 𝜌(2)).
𝜌 𝜌̇ 𝜈

States: 𝑐𝐴1 x
𝑐𝐵1 x
𝑇1 x x
𝑐𝐴2a

𝑐𝐵2a

𝑇2a

Inputs: 𝐹𝐵 x
𝐹𝑝 x x
𝑄1 x x x
𝑄2 x x

aStates which are held constant.

4.3. Reformulation to dynamic ramping constraints

After inserting the operating strategy defined in Section 4.2, we
solve the nonlinear backtransformation equation system. To this end,
we use the computer algebra package SymPy (Meurer et al., 2017) to
find explicit algebraic expressions for all states and inputs, except for
the temperature 𝑇1. The temperature 𝑇1 has to be determined numer-
ically because the two reaction terms in the differential Equation (S9)
lead to an equation of the form

0 = 𝑏0 + 𝑏1𝑒
− 𝐸1
𝑅𝑇1 + 𝑏2𝑒

− 𝐸2
𝑅𝑇1 , (14)

ith parameters 𝑏0, 𝑏1, 𝑏2. The implicit Eq. (14) has a unique solution
or the temperature, as the exponential functions are monotonic. The
umerical solution of Eq. (14) is found using the python package
ciPy (Virtanen et al., 2020).

Table 1 provides the structural dependency of the states and inputs
n the production rate 𝜌 and its time derivatives 𝜌̇ and 𝜈 (= 𝜌(2)).

The highest time derivative of the production rate that appears is two.
Therefore, the ramping degree of freedom 𝜈 is equal to 𝜌(2). More
etailed information about the reformulations is given in the SI.

For the dynamic ramping constraints, it has to be analyzed which
tate and input bounds limit the time derivatives of the production
ate 𝜌. States and inputs that are either held constant or exclusively
epend on the production rate 𝜌 do not need to be checked because it
s already known from the steady-state optimization that these variables
ake feasible values for all considered production rates. Consequently,
he variables 𝑐𝐴,1, 𝑐𝐵,1, 𝑐𝐴,2, 𝑐𝐵,2, 𝑇2, 𝐹𝐵 do not influence the dynamic
amping constraints (compare to Table 1).

The variables 𝑇1, 𝐹𝑝, 𝑄2 depend on 𝜌 and 𝜌̇ but not on the second
time derivative 𝜈. Accordingly, the bounds of these variables limit the
8

first time derivative 𝜌̇. In Fig. 7, the limits on 𝜌̇ resulting from variable
bounds are shown over the production rate 𝜌. The calculation of these
limits is explained in the SI. While the lower limit on 𝜌̇ results from
the bound 𝐹min

𝑝 , the upper limit is given by 𝐹max
𝑝 for small production

rates and by 𝑄min
2 for large production rates. Graphically, we choose

conservative linear functions for the limits 𝜌̇min(𝜌) = 𝑎min
0 + 𝑎min

1 𝜌,
̇max(𝜌) = 𝑎max

0 + 𝑎max
1 𝜌 with parameters 𝑎min

0 , 𝑎min
1 , 𝑎max

0 , 𝑎max
1 (compare

to (DRCb)).
The heating input 𝑄1 is the only variable that depends on the ramp-

ing degree of freedom 𝜈. We choose piecewise affine limits 𝜈min
PWA(𝜌, 𝜌̇),

𝜈max
PWA(𝜌, 𝜌̇) (compare to (DRCd)) which cover 95% of the feasible area.

Further details are given in the SI.
With the limits on 𝜈, the second-order dynamic ramping constraints

are completely parameterized and have the form:

𝜌(2) = 𝜈 (15)

𝑎min
0 + 𝑎min

1 𝜌 ≤ 𝜌̇ ≤ 𝑎max
0 + 𝑎max

1 𝜌 (16)

𝜈min
PWA (𝜌, 𝜌̇) ≤ 𝜈 ≤ 𝜈max

PWA (𝜌, 𝜌̇) (17)

4.4. Investigation 1: Ramp optimizations

To illustrate the ramping behavior with the derived dynamic ramp-
ing constraints, we perform two as-fast-as-possible ramp optimizations
shown in Fig. 8. The ramp-up from minimum production rate to maxi-
mum production rate takes 1.3 h, and the corresponding ramp-down
takes 3.1 h. The ramp-up is first constrained by the acceleration,
i.e., the bounds on 𝜈, and then by the speed, i.e., the bounds on 𝜌̇. In
contrary, the ramp-down is always constrained by the bounds on 𝜈.

To visualize such an optimized ramp on the full-order process
model, we simulate the ramp-up by using the optimized production rate
trajectory (left part of Fig. 8) as input to a simulation and calculate the
control inputs 𝐮 using the backtransformation function 𝐮 = 𝝍2(𝜌, 𝜌̇, 𝜈)
derived above. While the first three flat output components 𝑐𝐴2, 𝑐𝐵2, 𝑇2
are maintained at their nominal values, the fourth output component
𝑐𝐴1 follows the function of the production rate 𝑐𝐴1 = 𝜋4(𝜌) specified in
the operating strategy (Fig. 9). All other states and inputs are within
their respective bounds. Moreover, in the first half hour, when the
ramp-up is limited by the limit on the acceleration 𝜈max (compare
to Fig. 8, left), 𝑄1 is close to its maximum value (Fig. 9) because
the upper limit of 𝜈max is derived from 𝑄max

1 . However, 𝑄1 does not
reach its maximum value due to the conservative piecewise affine
approximation. During the second half hour, the ramp-up is limited by
the maximum speed 𝜌̇max (compare to Fig. 8, left) and thus the control
input 𝑄2, which limits the speed for high production rates 𝜌 (compare
to Fig. 7), is close to its bounds (Fig. 9). Here, 𝑄2 comes very close to
its bound as the conservative approximation of the ramping limit on 𝜌̇
is very close to the true nonlinear limit (Fig. 7). Finally, at hour 1.25,
the acceleration 𝜈 touches the lower limit 𝜈min (Fig. 8) and the input

min
𝑄1 reaches its lower limit 𝑄1 (Fig. 9).
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w

𝜌

Fig. 8. Production rate 𝜌, its first time derivative 𝜌̇, and ramping degree of freedom 𝜈 for an as-fast-as-possible ramp up (left) and an as-fast-as-possible ramp down (right) together
ith their bounds. The bounds of 𝜌̇ are functions of 𝜌 and the bounds of 𝜈 are functions of 𝜌, 𝜌̇. The ramping degree of freedom 𝜈 is discretized to be piece-wise linear.
Fig. 9. Simulation result of ramp-up optimization (Fig. 8, left) on the full-order process model showing states 𝐱 = (𝑐𝐴1 , 𝑐𝐵1 , 𝑇1 , 𝑐𝐴2 , 𝑐𝐵2 , 𝑇2)𝑇 (left), and control inputs 𝐮 =
(𝐹𝐵 , 𝐹𝑝 , 𝑄1 , 𝑄2)𝑇 (right). Minimum (min) and maximum (max) values are shown in dashed–dotted lines. The nominal values of the flat output components 𝑐𝐴2 , 𝑐𝐵2 , 𝑇2 and the
operating strategy 𝜋4(𝜌) for the flat output component 𝑐𝐴1 are shown in dashed lines.
Ramp optimization and corresponding simulation show that even
though the dynamic ramping constraints are formed by linear and
piecewise affine equations, they can capture dynamics that are signif-
icantly more complex than traditional static first-order ramps. More-
over, the original process model with 6 states and 5 degrees of freedom
is reduced to a dynamic ramping constraint with only 2 states, i.e., 𝜌,
9

̇ , and one degree of freedom 𝜈. Accordingly, coupling the flat outputs
to the production rate reduces the model size and thus simplifies
optimization.

4.5. Investigation 2: Demand response application

To demonstrate the dynamic ramping constraints in a DR applica-
tion, the flexible process is considered together with a multi-energy
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Fig. 10. Multi-energy system and reactor-separator process with recycle: The flexible
process as well as additional non-flexible heat and electricity demands are supplied by
an multi-energy system, consisting of 4 combined heat and power plants (CHP1-CHP4)
and 2 boilers (B1, B2). Moreover, electricity can be exchanged with the grid.

system and additional non-flexible heat and electricity demands
(Fig. 10). We consider an energy system based on Sass et al. (2020).
However, instead of one combined heat and power plant (CHP) and one
boiler (B), we extended the system to 4 CHPs and 2 boilers to study a
larger energy system with more discrete on/off-decisions. Additionally,
electricity can be bought from and sold to the grid for the day-ahead
price that may change hourly. The details about the multi-energy
system and the derivation of the optimization problem (P) are given
in the SI.

The optimization problem (P) is formulated using pyomo (Hart
et al., 2017, 2011) and discretized using the extension pyomo.dae
(Nicholson et al., 2018). We apply discretization by orthogonal collo-
cation on finite elements with 2 elements per hour and 3 collocation
points per element. This discretization was found to be sufficiently
accurate in preliminary calculations. Overall, we have 144 discretiza-
tion points over the 24 h time horizon. The discretized problem has
5559 continuous variables. For the binary variables, we use a time
discretization of one hour to match the time step of electricity prices.
There are 6 binaries per hour for the on/off-decision of energy system
units and 3 binaries per hour for the piecewise affine limits on the
ramping degree of freedom 𝜈 and the piecewise affine energy demand
model (more details in the SI). Thus, the final MILP problem has
9 × 24 = 216 binary variables.

The optimization problem is solved using gurobi version 9.5.2
Gurobi Optimization, 2021). As Harjunkoski et al. (2014) state that
he maximum acceptable optimization runtime for scheduling problems
s typically between 5 and 20 min, we set the maximum optimization
untime to 5 min. All calculations are performed on a Windows 11
achine with an Intel(R) Core(TM) i7-1165G7 CPU and 16 GB RAM.

First, the energy system operation is optimized without accounting
or the energy demand of the flexible process to obtain the energy costs
f the inflexible demands only. Second, the operation of the energy
ystem is optimized with the flexible process operating in steady-state
uch that the demand of the flexible process is constant (compare to
ig. 11, right). Third, the DR optimization is performed using dynamic
amping constraints (compare to Fig. 11, left).

The DR operation of the process reduces the total energy costs by
.6% compared to steady-state operation. Considering only the energy
osts associated with the flexible process, the cost reduction through
emand response is 9.8%.

In the resulting operation, two types of periods can be distinguished:
n times of low electricity prices, heat is preferably produced by the
oilers, and electricity is bought from the grid (hours 13–18). In times
f high electricity prices, heat is preferable provided by the CHPs, and
xcess electricity is sold to the grid (hours 1–12, 19–24). The DR case
educes costs due to two reasons: First, the boilers are operated less.
nstead of 12 h, the boilers are only active in 10 h (Fig. 11). The
10

mount of heat provided by the boilers is reduced by 2%. Second,
the heat demand of the flexible process and, therefore, the electricity
production of the CHPs is shifted from hours of low prices to hours with
higher prices (Fig. 11). For instance, the heat demand is lower in hour
15 and higher in hour 5. Consequently, the derived dynamic ramping
constraints allow to reduce costs substantially compared to steady-state
process operation.

The optimization problem terminates after a maximum runtime of
5 min that we set following Harjunkoski et al. (2014). The remaining
optimality gap is 3.9%. As a further comparison, we simplify the bounds
of the ramping degree of freedom 𝜈 in Eq. (17) from piecewise affine to
purely linear functions. These linear functions only cover 80% instead
of 95% of the feasible area for 𝜈 (compare to Section 4.2). With these
linear limits 𝜈min

lin , 𝜈max
lin , we receive very similar results compared to

those previously obtained with the piecewise affine limits: While the
cost reductions achieved with the linear limits slightly improve to
4.7% instead of 4.6%, the remaining optimality gap slightly worsens
to 4.2% instead of 3.9%. That is, with purely linear dynamic ramping
constraints, we find a comparable near-optimal solution with a com-
parable optimality gap. Overall, even if the on/off-status of 6 energy
system units has to be optimized simultaneously with the process
operation, the optimization provides a schedule achieving substantial
cost reductions within this maximum optimization runtime of 5 min.

5. Discussion

In this section, we discuss possible adaptations and limitations of
our approach.

Throughout this paper, we assume that the production rate 𝜌 is a
degree of freedom (compare to assumptions in Section 3.1). However,
the method can be adapted to cases where the production rate is not
a degree of freedom but a component of the flat output vector 𝜉𝑘. For
nstance, if the flow rate of the product stream would be hydraulically
riven by a filling level ℎfill, the production rate would be given as part
f the flat output by a function of ℎfill. In such cases, the production
ate cannot be controlled directly but only through manipulating the
orresponding input 𝑢𝑘. For instance, the filling level ℎfill could be
ontrolled by manipulating the feedflow of the corresponding unit.

In our operating strategy discussed in Section 3.2.2, all flat output
omponents without given specifications are coupled to the production
ate. This coupling reduces the dimensionality of the model. Instead of

flat outputs and their derivatives, only the production rate and its
erivatives are variables in the optimization problem. Consequently,
here are 𝛿 states and one degree of freedom. This dimensionality
eduction strongly reduces the computational complexity of the opti-
ization problem. Still, coupling all flat outputs with the production

ate might be unfavorable in cases where some flat outputs can only
e changed much slower than the production rate. In such cases, the
utputs without specifications could be kept as independent integrator
hains in the ramping model (right part in Fig. 3). In our case study,
he concentration 𝑐𝐴1, which is the fourth flat output component, could
e uncoupled such that there are two integrator chains in the ramping
odel: one for the production rate 𝜌 and one for the concentration 𝑐𝐴1.

Consequently, dynamic ramping constraints need to be derived for both
integrator chains. While this uncoupled version makes the ramping
model computationally more challenging, it is also more flexible and
thus might enable higher profits in some cases. An extreme example
is electrolyzers that can often adapt their production rate rapidly but
have slow temperature dynamics (Simkoff and Baldea, 2020; Flamm
et al., 2021). Thus, for electrolyzers, it is not favorable to couple the
temperature with the production rate. Instead, we have shown recently
in a conference paper that it is favorable to keep both production rate
and temperature as degrees of freedom and formulate dynamic ramping
constraints on the temperature (Baader et al., 2022b).

Conceptually, the electrolyzer example Baader et al. (2022b) also
shows that it is possible to consider two scheduling-relevant variables at

a time. Especially, our approach based on dynamic ramping constraints
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Fig. 11. Resulting schedule for the flexible process performing demand response (left) and the flexible process being operated in steady-state (right). Top: electricity price. Second
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emand is shown as black line. Bottom: Production rate 𝜌.
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ould be applied to the case of processes with two production rates
1 and 𝜌2, where the process model from Eq. (4) changes to 𝐱̇ =
(𝐱,𝐮, 𝜌1, 𝜌2). In that case, there would be two ramping state vectors
1 and 𝝋2 and two ramping degrees of freedom 𝜈1 and 𝜈2. In general,

he ramping degrees of freedom 𝜈1, 𝜈2 are limited by both ramping state
ectors 𝝋1, 𝝋2 and also influence each other. Thus, the ramping limits
ead:
min
1 (𝝋1,𝝋2, 𝜈2) ≤ 𝜈1 ≤ 𝜈max

1 (𝝋1,𝝋2, 𝜈2) (18)
min
2 (𝝋1,𝝋2, 𝜈1) ≤ 𝜈2 ≤ 𝜈max

2 (𝝋1,𝝋2, 𝜈1) (19)

n principle, our dynamic ramping approach can also be applied to
ore than two scheduling-relevant variables. However, increasing the
umber of scheduling-relevant variables also increases the number of
rguments entering the functions 𝜈min

𝑖 (⋅), 𝜈max
𝑖 (⋅). Thus, a piecewise

ffine approximation of the ramping limits 𝜈min
𝑖 (⋅), 𝜈max

𝑖 (⋅) might require
any binaries and lead to a high computational burden.

The present work focuses on demand response applications where
he production rate 𝜌 is the main scheduling-relevant variable. How-
ver, it is straightforward to adapt the approach to cases where a
ifferent variable is scheduling-relevant. For example, in multi-product
rocesses, the concentration may be varied to yield different products.
hus, the scheduling needs to account for the dynamics of the concen-
ration during product transitions (Flores-Tlacuahuac and Grossmann,
006; Baader et al., 2022c). Our approach can be transferred to such
multi-product process if the production rate 𝜌 is replaced by the

oncentration.
The main limitation of our approach is the assumption of a flat

rocess model. For non-flat process models, the ramping limits could
till be derived as functions of all process states 𝐱. However, it is not
ossible to find the coordinate transformation from the process states
to a transformed state vector 𝜩 as defined in Eq. (6), and thus,
11

he ramping limits cannot be given as functions of the ramping state
ector 𝝋 only. Hence, an extension to non-flat processes would be partly
euristic as the state vector 𝐱 in the ramping limits would have to be
pproximated based on the ramping state 𝝋.

Another limitation of this work is that solving the equation system
to derive the backtransformation requires a lot of manual effort, even
though a computer algebra system is used as support. It is an open
question to what extent our approach can be automated to enable
the analysis of large-scale processes. Still, we do not consider this
to be a significant restriction of our work as processes fulfilling our
flatness assumption usually do not have too many states (Oldenburg
and Marquardt, 2002): As inputs must be matched to outputs such that
all states are covered (compare to the necessary graphical condition,
e.g., Fig. 6), processes having much more states than inputs are usually
not flat. Thus, our method will likely not be applicable to large-scale
process models with hundreds of states. However, our approach seems
applicable for flat process models with a number of states in the low
double-digit range. As stated at the beginning of Section 4, we only
reduced the textbook example by Christofides et al. (2011) from 9 states
to 6 to ease the readability of the paper. Still, in a previous version,
we considered the original version with 9 states and could find the
inverse transformation easily using computer algebra. In future work,
our approach could be coupled with model-order reduction approaches
that derive a low-order representation of the process dynamics for
the slow time scale (Baldea and Daoutidis, 2012). Even if the full-
scale process model is not flat, the low-order dynamics relevant for
scheduling optimization might be.

6. Conclusion

Dynamic ramping constraints simplify the simultaneous demand
response scheduling optimization of production processes and their

energy systems compared to an optimization considering the full-order
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process model. Still, dynamic ramping constraints can capture more
flexibility than traditional static ramping constraints as they allow
high-order dynamics and non-constant ramp limits. In this paper, we
extend our method to rigorously derive dynamic ramping constraints
from input-state linearizable single-input single-output (SISO) pro-
cesses (Baader et al., 2022a) to flat multi-input multi-output (MIMO)
processes. In the MIMO case, dynamic ramping constraints reduce the
problem dimensionality by coupling all flat outputs with the production
rate. In our case study, a system with 6 states and 5 degrees of freedom
is reduced to 2 states and one degree of freedom. Additionally, we
demonstrate that an operational strategy can be chosen for flat outputs
such that the steady-state production points are optimal, e.g., with
respect to energy consumption.

Our case study demonstrates that dynamic ramping constraints
allow for finding DR schedules for flexible processes and multi-energy
systems that substantially reduce energy costs compared to a steady-
state operation. Even though discrete on/off-decisions in the multi-
energy system add to the computational complexity, the problem can
be solved within the time limit for online scheduling.

Overall, dynamic ramping constraints allow bridging the gap be-
tween nonlinear process models and simplified process representations
suitable for real-time scheduling optimization.

Nomenclature

Abbreviations

CHP Combined heat and power plant
CSTR Continuous stirred tank reactor
DR Demand response
DRC Dynamic ramping constraint
MIDO Mixed-integer dynamic optimization
MILP Mixed-integer linear program
MIMO Multi-input multi-output
MINLP Mixed-integer nonlinear program
SISO Single-input single-output

Greek symbols

𝛼 Integer number (compare to assumption 3a)
𝛼𝐾 Relative volatility of component K
𝛽 Integer number (compare to assumption 3b)
𝛾 Integer number (compare to assumption 3b)
𝛿 Order of dynamic ramping constraint
𝜁 Integer number
𝜅 Integer number (compare to assumption 3a)
𝜈 Ramping degree of freedom
𝜩 Transformed state vector
𝜉 Flat output
𝜋 Operating strategy
𝜌 Production rate
𝜚𝐹 Density
𝛷 Objective
𝜙 Transformation to flat output
𝝋 Ramping state vector
𝜓 Backtransformation from flat output

atin symbols

𝑎 Coefficient
𝑏 Parameter
𝐶 Coverage
𝐶𝑝 Heat capacity
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𝑐 Concentration
𝐸 Activation energy
F Flow rate
𝑓 Nonlinear function
𝐻 Enthalpy
𝑘 Reaction constant
𝑚 Number of control inputs
𝑛 Number of states
𝑃 Power
𝑄 Heat flow
𝑅 Gas constant
𝑇 Temperature
𝑡 Time
𝑢 Control input
𝑉 Volume
𝑣 Vertex
𝑥 State
𝑧 Binary variable

Subscripts

0 Feed
1 Reactor
2 Flash
A Component A
B Component B or bottom
C Component C
dem Demand
el Electric
f Final time
p Purge
s Steady-state
V Vaporization

Superscripts

max Maximum
min Minimum
nom Nominal
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