001021660 001__ 1021660
001021660 005__ 20240712113149.0
001021660 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00916
001021660 037__ $$aFZJ-2024-00916
001021660 1001_ $$0P:(DE-Juel1)180992$$aDavis, Binny Alangadan$$b0$$eFirst author$$ufzj
001021660 1112_ $$a74th Annual Meeting of the International Society of Electrochemistry$$cLyon$$d2023-09-03 - 2023-09-08$$g74th Annual ISE Meeting$$wFrance
001021660 245__ $$aStructure and dynamics at catalyst-ionomerinterfaces studied with molecular dynamics
001021660 260__ $$c2023
001021660 3367_ $$033$$2EndNote$$aConference Paper
001021660 3367_ $$2BibTeX$$aINPROCEEDINGS
001021660 3367_ $$2DRIVER$$aconferenceObject
001021660 3367_ $$2ORCID$$aCONFERENCE_POSTER
001021660 3367_ $$2DataCite$$aOutput Types/Conference Poster
001021660 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1706167158_30700$$xAfter Call
001021660 502__ $$cRWTH Aachen
001021660 520__ $$aCatalyst-ionomer interfaces play a vital role for the performance of catalyst layers in polymerelectrolyte fuel cells. The catalyst layer harbors the electrochemically active sites at the catalyst surfaceand the ionomer embedded into the catalyst layer facilitates the efficient transport of protons.1,2 Thisinterface has a complex structure that can be characterized at multiple length scales, ranging from thenanoscale to the microscale. At nanoscale, the interface consists of individual catalyst particles that areembedded within the ionomer material.1,4 The catalyst particles are typically composed of platinum orplatinum-based alloys, and their size, shape, and surface morphology can have a significant impact on thecatalytic activity of the fuel cell. The ionomer material, which is typically a perfluorosulfonic acidpolymer, surrounds the catalyst particles and serves as a proton conductor and binder. In this work, weemploy atomistic molecular dynamics simulations for a model system of the nanoconfined water slabwithin the catalyst-ionomer interface to gain deeper insights into the impact of interfacial water-mediatedinteractions on its structural and dynamical properties. The proton concentration at the catalyst-ionomerinterface is directly influenced by the adsorption state and surface charge density of the metal-basedcatalyst1,2 as well as the structure and properties of the charged ionomer layer.3 Here, we explore the waterstructure and proton density distributions in the water slab as well as the dynamics of water molecules,hydronium ions, and anionic head groups as functions of interface structure and composition.References1. M.H. Eikerling, A.A Kulikovsky, Polymer Electrolyte Fuel Cells, CRC Press, Taylor & Francis Group, (2014).2. M. Eikerling, A.A. Kornyshev, and A.A. Kulikovsky, Physical Modeling of Cell Components, Cells and Stacks, inEncyclopedia of Electrochemistry, Vol. 5, ed. by D.D. Macdonald and P. Schmuki, ch. 8.2, 447-543, VCH-Wiley,Weinheim, (2007).3. A. Nouri-Khorasani, K. Malek, A. Malek, T. Mashio, D.P. Wilkinson, M.H. Eikerling, Catalysis Today. 262, (2016) 133-140.4. V. M. Fernández-Alvarez et al., J. Electrochem. Soc.,169 (2022), 024506
001021660 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001021660 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b1$$eCorresponding author$$ufzj
001021660 8564_ $$uhttps://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.pdf$$yOpenAccess
001021660 8564_ $$uhttps://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.gif?subformat=icon$$xicon$$yOpenAccess
001021660 8564_ $$uhttps://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021660 8564_ $$uhttps://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021660 8564_ $$uhttps://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021660 909CO $$ooai:juser.fz-juelich.de:1021660$$pdriver$$pVDB$$popen_access$$popenaire
001021660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180992$$aForschungszentrum Jülich$$b0$$kFZJ
001021660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b1$$kFZJ
001021660 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001021660 9141_ $$y2023
001021660 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021660 920__ $$lyes
001021660 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001021660 9801_ $$aFullTexts
001021660 980__ $$aposter
001021660 980__ $$aVDB
001021660 980__ $$aUNRESTRICTED
001021660 980__ $$aI:(DE-Juel1)IEK-13-20190226
001021660 981__ $$aI:(DE-Juel1)IET-3-20190226