001     1021660
005     20240712113149.0
024 7 _ |a 10.34734/FZJ-2024-00916
|2 datacite_doi
037 _ _ |a FZJ-2024-00916
100 1 _ |a Davis, Binny Alangadan
|0 P:(DE-Juel1)180992
|b 0
|e First author
|u fzj
111 2 _ |a 74th Annual Meeting of the International Society of Electrochemistry
|g 74th Annual ISE Meeting
|c Lyon
|d 2023-09-03 - 2023-09-08
|w France
245 _ _ |a Structure and dynamics at catalyst-ionomerinterfaces studied with molecular dynamics
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1706167158_30700
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Catalyst-ionomer interfaces play a vital role for the performance of catalyst layers in polymerelectrolyte fuel cells. The catalyst layer harbors the electrochemically active sites at the catalyst surfaceand the ionomer embedded into the catalyst layer facilitates the efficient transport of protons.1,2 Thisinterface has a complex structure that can be characterized at multiple length scales, ranging from thenanoscale to the microscale. At nanoscale, the interface consists of individual catalyst particles that areembedded within the ionomer material.1,4 The catalyst particles are typically composed of platinum orplatinum-based alloys, and their size, shape, and surface morphology can have a significant impact on thecatalytic activity of the fuel cell. The ionomer material, which is typically a perfluorosulfonic acidpolymer, surrounds the catalyst particles and serves as a proton conductor and binder. In this work, weemploy atomistic molecular dynamics simulations for a model system of the nanoconfined water slabwithin the catalyst-ionomer interface to gain deeper insights into the impact of interfacial water-mediatedinteractions on its structural and dynamical properties. The proton concentration at the catalyst-ionomerinterface is directly influenced by the adsorption state and surface charge density of the metal-basedcatalyst1,2 as well as the structure and properties of the charged ionomer layer.3 Here, we explore the waterstructure and proton density distributions in the water slab as well as the dynamics of water molecules,hydronium ions, and anionic head groups as functions of interface structure and composition.References1. M.H. Eikerling, A.A Kulikovsky, Polymer Electrolyte Fuel Cells, CRC Press, Taylor & Francis Group, (2014).2. M. Eikerling, A.A. Kornyshev, and A.A. Kulikovsky, Physical Modeling of Cell Components, Cells and Stacks, inEncyclopedia of Electrochemistry, Vol. 5, ed. by D.D. Macdonald and P. Schmuki, ch. 8.2, 447-543, VCH-Wiley,Weinheim, (2007).3. A. Nouri-Khorasani, K. Malek, A. Malek, T. Mashio, D.P. Wilkinson, M.H. Eikerling, Catalysis Today. 262, (2016) 133-140.4. V. M. Fernández-Alvarez et al., J. Electrochem. Soc.,169 (2022), 024506
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
700 1 _ |a Eikerling, Michael
|0 P:(DE-Juel1)178034
|b 1
|e Corresponding author
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021660/files/September_3_2023_poster_ISE_Lyon_Binny_Davis.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021660
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180992
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178034
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21