001021663 001__ 1021663 001021663 005__ 20240226075402.0 001021663 0247_ $$2doi$$a10.1002/pro.4818 001021663 0247_ $$2ISSN$$a0961-8368 001021663 0247_ $$2ISSN$$a1469-896X 001021663 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00919 001021663 0247_ $$2WOS$$aWOS:001120921400001 001021663 037__ $$aFZJ-2024-00919 001021663 082__ $$a610 001021663 1001_ $$0P:(DE-Juel1)178763$$aSchumann, Wibke$$b0 001021663 245__ $$aIntegrative modeling of guanylate binding protein dimers 001021663 260__ $$aBethesda, Md.$$bProtein Society$$c2023 001021663 3367_ $$2DRIVER$$aarticle 001021663 3367_ $$2DataCite$$aOutput Types/Journal article 001021663 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706102233_9439 001021663 3367_ $$2BibTeX$$aARTICLE 001021663 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001021663 3367_ $$00$$2EndNote$$aJournal Article 001021663 520__ $$aGuanylate-binding proteins (GBPs) are essential interferon-γ-activated largeGTPases that play a crucial role in host defense against intracellular bacteriaand parasites. While their protective functions rely on protein polymerization,our understanding of the structural intricacies of these multimerized statesremains limited. To bridge this knowledge gap, we present dimer models forhuman GBP1 (hGBP1) and murine GBP2 and 7 (mGBP2 and mGBP7) usingan integrative approach, incorporating the crystal structure of hGBP1's GTPasedomain dimer, crosslinking mass spectrometry, small-angle X-ray scattering,protein–protein docking, and molecular dynamics simulations. Our investiga-tion begins by comparing the protein dynamics of hGBP1, mGBP2, andmGBP7. We observe that the M/E domain in all three proteins exhibits signifi-cant mobility and hinge motion, with mGBP7 displaying a slightly less pro-nounced motion but greater flexibility in its GTPase domain. These dynamicdistinctions can be attributed to variations in the sequences of mGBP7 andhGBP1/mGBP2, resulting in different dimerization modes. Unlike hGBP1 andits close ortholog mGBP2, which exclusively dimerize through their GTPasedomains, we find that mGBP7 exhibits three equally probable alternativedimer structures. The GTPase domain of mGBP7 is only partially involved inits dimerization, primarily due to an accumulation of negative charge, allowingmGBP7 to dimerize independently of GTP. Instead, mGBP7 exhibits a strong tendency to dimerize in an antiparallel arrangement across its stalks. Theresults of this work go beyond the sequence–structure–function relationship,as the sequence differences in mGBP7 and mGBP2/hGBP1 do not lead to dif-ferent structures, but to different protein dynamics and dimerization. The dis-tinct GBP dimer structures are expected to encode specific functions crucial fordisrupting pathogen membranes. 001021663 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0 001021663 588__ $$aDataset connected to DataCite 001021663 7001_ $$0P:(DE-Juel1)174397$$aLoschwitz, Jennifer$$b1$$ufzj 001021663 7001_ $$0P:(DE-HGF)0$$aReiners, Jens$$b2 001021663 7001_ $$0P:(DE-HGF)0$$aDegrandi, Daniel$$b3 001021663 7001_ $$0P:(DE-HGF)0$$aLegewie, Larissa$$b4 001021663 7001_ $$0P:(DE-HGF)0$$aStühler, Kai$$b5 001021663 7001_ $$0P:(DE-HGF)0$$aPfeffer, Klaus$$b6 001021663 7001_ $$0P:(DE-HGF)0$$aPoschmann, Gereon$$b7 001021663 7001_ $$0P:(DE-HGF)0$$aSmits, Sander H. J.$$b8 001021663 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b9$$eCorresponding author 001021663 773__ $$0PERI:(DE-600)2000025-X$$a10.1002/pro.4818$$gVol. 32, no. 12, p. e4818$$n12$$pe4818$$tProtein science$$v32$$x0961-8368$$y2023 001021663 8564_ $$uhttps://juser.fz-juelich.de/record/1021663/files/Protein%20Science%20-%202023%20-%20Schumann%20-%20Integrative%20modeling%20of%20guanylate%20binding%20protein%20dimers.pdf$$yOpenAccess 001021663 8564_ $$uhttps://juser.fz-juelich.de/record/1021663/files/Protein%20Science%20-%202023%20-%20Schumann%20-%20Integrative%20modeling%20of%20guanylate%20binding%20protein%20dimers.gif?subformat=icon$$xicon$$yOpenAccess 001021663 8564_ $$uhttps://juser.fz-juelich.de/record/1021663/files/Protein%20Science%20-%202023%20-%20Schumann%20-%20Integrative%20modeling%20of%20guanylate%20binding%20protein%20dimers.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001021663 8564_ $$uhttps://juser.fz-juelich.de/record/1021663/files/Protein%20Science%20-%202023%20-%20Schumann%20-%20Integrative%20modeling%20of%20guanylate%20binding%20protein%20dimers.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001021663 8564_ $$uhttps://juser.fz-juelich.de/record/1021663/files/Protein%20Science%20-%202023%20-%20Schumann%20-%20Integrative%20modeling%20of%20guanylate%20binding%20protein%20dimers.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001021663 909CO $$ooai:juser.fz-juelich.de:1021663$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001021663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174397$$aForschungszentrum Jülich$$b1$$kFZJ 001021663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b9$$kFZJ 001021663 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 001021663 9141_ $$y2023 001021663 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROTEIN SCI : 2022$$d2023-08-25 001021663 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0 001021663 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-25$$wger 001021663 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001021663 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPROTEIN SCI : 2022$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25 001021663 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25 001021663 920__ $$lyes 001021663 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0 001021663 980__ $$ajournal 001021663 980__ $$aVDB 001021663 980__ $$aUNRESTRICTED 001021663 980__ $$aI:(DE-Juel1)IBI-7-20200312 001021663 9801_ $$aFullTexts