001     1021682
005     20240712112839.0
024 7 _ |a 10.31224/osf.io/uep79
|2 doi
024 7 _ |a 10.34734/FZJ-2024-00928
|2 datacite_doi
037 _ _ |a FZJ-2024-00928
100 1 _ |a Schaefer, Felix
|0 0000-0002-4170-8123
|b 0
|e Corresponding author
245 _ _ |a Control of oxygen-to-carbon ratio and fuel utilization with regard to solid oxide fuel cell systems with anode-offgas recirculation: A review
260 _ _ |c 2022
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1706171710_26513
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a One of the possible SOFC system-configurations providing the highest potential of electrical DC-efficiency of up to 65% is a SOFC-system with anode exhaust gas recirculation (AEGR), where part of the depleted anode exhaust gas is recirculated and mixed with fresh natural gas upstream of the reformer. For safe and durable operation of a SOFC-system, the oxygen-to-carbon-ratio and the fuel utilization as characteristic parameters must not exceed stack- and reformer-specific thresholds. The determination and control of the characteristic parameters are therefore of crucial importance. However, this poses especially for SOFC-systems with AEGR due to enhanced system complexity a challenging task. In this paper, the authors present an overview on representative control strategies as well as different approaches to determine or diagnose characteristic parameters with emphasis on SOFC-systems with AEGR. Some conclusions are discussed based on the provided overview and outlines recommendations for future research work.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Egger, Sebastian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Steiner, Dietmar
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Maxime, Carré
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
|u fzj
773 _ _ |a 10.31224/osf.io/uep79
|p up79
|v 1
|y 2022
|t engrXiv Preprints
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021682/files/A_review_on_control_of_oxygen_formatted_v6_clean.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021682/files/A_review_on_control_of_oxygen_formatted_v6_clean.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021682/files/A_review_on_control_of_oxygen_formatted_v6_clean.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021682/files/A_review_on_control_of_oxygen_formatted_v6_clean.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021682/files/A_review_on_control_of_oxygen_formatted_v6_clean.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021682
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 0000-0002-4170-8123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21