001     1021714
005     20240403082800.0
024 7 _ |a 10.1109/IEDM45625.2022.10019348
|2 doi
024 7 _ |a WOS:000968800700008
|2 WOS
037 _ _ |a FZJ-2024-00959
041 _ _ |a English
100 1 _ |a Jiang, Mingrui
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 2022 IEEE International Electron Devices Meeting (IEDM)
|g IEDM
|c San Francisco
|d 2022-12-03 - 2022-12-07
|w USA
245 _ _ |a An efficient synchronous-updating memristor-based Ising solver for combinatorial optimization
260 _ _ |c 2022
|b IEEE
300 _ _ |a 22.2.1-22.2.4
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1710249608_19742
|2 PUB:(DE-HGF)
520 _ _ |a Despite showing significant potential in solving combinatorial optimization problems, existing memristor-based solvers update node states asynchronously by performing matrix multiplication column-by-column, leaving the massive parallelism of the crossbar not fully exploited. In this work, we propose and experimentally demonstrate solving the optimization problems with a synchronous-updating memristor-based Ising solver, which is realized by a binary neural network-inspired updating algorithm and a physics-inspired annealing method. The newly proposed method saves more than 5x time and 35x energy consumption compared to the state-of-the-art mem-HNN for finding the optimal solution to a 60-node Max-cut problem.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Shan, Keyi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sheng, Xia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Graves, Cat
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 4
|e Corresponding author
700 1 _ |a Li, Can
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1109/IEDM45625.2022.10019348
909 C O |o oai:juser.fz-juelich.de:1021714
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 1
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21