001021851 001__ 1021851 001021851 005__ 20240226075408.0 001021851 0247_ $$2doi$$a10.23919/VLSITechnologyandCir57934.2023.10185373 001021851 037__ $$aFZJ-2024-01000 001021851 1001_ $$0P:(DE-Juel1)176845$$aHan, Yi$$b0$$eCorresponding author$$ufzj 001021851 1112_ $$a2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)$$cKyoto$$d2023-06-11 - 2023-06-16$$wJapan 001021851 245__ $$aHigh Performance 5 nm Si Nanowire FETs with a Record Small SS = 2.3 mV/dec and High Transconductance at 5.5 K Enabled by Dopant Segregated Silicide Source/Drain 001021851 260__ $$c2023 001021851 3367_ $$033$$2EndNote$$aConference Paper 001021851 3367_ $$2DataCite$$aOther 001021851 3367_ $$2BibTeX$$aINPROCEEDINGS 001021851 3367_ $$2DRIVER$$aconferenceObject 001021851 3367_ $$2ORCID$$aLECTURE_SPEECH 001021851 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1706529096_21453$$xAfter Call 001021851 520__ $$aThe effect of band edge states is the critical issue for cryogenic CMOS, which worsens the performance of conventional MOSFETs at cryogenic temperature (Cryo-T) with saturated subthreshold swing (SS), large transition region (inflection phenomenon) and limited mobility. To address these problems, we fabricated gate-all-around (GAA) Si nanowire (NW) MOSFETs using fully silicided source/drain and dopant segregation. The effect of band edge states is significantly uppressed using this technology. Thus, SS, the effective average SSth and the transconductance (Gm) continuously improve as temperature decreases allowing us to achieve high performance NW FETs at 5.5 K with a record small SS of 2.3 mV/dec, ltra-small DIBL of 0.02 mV/V, and high Gm of 1.25mS/µm at Vd = 0.1 V. 001021851 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0 001021851 536__ $$0G:(GEPRIS)422581876$$aDFG project 422581876 - Kryogene CMOS Technologie für die Realisierung von von klassischen QuBit-Kontrollschaltkreisen (422581876)$$c422581876$$x1 001021851 588__ $$aDataset connected to CrossRef Conference 001021851 7001_ $$0P:(DE-Juel1)186864$$aSun, Jingxuan$$b1$$ufzj 001021851 7001_ $$0P:(DE-Juel1)177006$$aBae, Jin-Hee$$b2$$ufzj 001021851 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b3$$ufzj 001021851 7001_ $$0P:(DE-HGF)0$$aKnoch, Joachim$$b4 001021851 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b5$$ufzj 001021851 773__ $$a10.23919/VLSITechnologyandCir57934.2023.10185373 001021851 8564_ $$uhttps://juser.fz-juelich.de/record/1021851/files/Han%20et%20al.%20-%202023%20-%20High%20Performance%205%20nm%20Si%20Nanowire%20FETs%20with%20a%20Record%20Small%20SS%20%3D%202%20.%203%20mV%20dec%20and%20High%20Transconductance%20at%205%20.%205%20K%20E.pdf$$yRestricted 001021851 8564_ $$uhttps://juser.fz-juelich.de/record/1021851/files/Han%20et%20al.%20-%202023%20-%20High%20Performance%205%20nm%20Si%20Nanowire%20FETs%20with%20a%20Record%20Small%20SS%20%3D%202%20.%203%20mV%20dec%20and%20High%20Transconductance%20at%205%20.%205%20K%20E.gif?subformat=icon$$xicon$$yRestricted 001021851 8564_ $$uhttps://juser.fz-juelich.de/record/1021851/files/Han%20et%20al.%20-%202023%20-%20High%20Performance%205%20nm%20Si%20Nanowire%20FETs%20with%20a%20Record%20Small%20SS%20%3D%202%20.%203%20mV%20dec%20and%20High%20Transconductance%20at%205%20.%205%20K%20E.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 001021851 8564_ $$uhttps://juser.fz-juelich.de/record/1021851/files/Han%20et%20al.%20-%202023%20-%20High%20Performance%205%20nm%20Si%20Nanowire%20FETs%20with%20a%20Record%20Small%20SS%20%3D%202%20.%203%20mV%20dec%20and%20High%20Transconductance%20at%205%20.%205%20K%20E.jpg?subformat=icon-180$$xicon-180$$yRestricted 001021851 8564_ $$uhttps://juser.fz-juelich.de/record/1021851/files/Han%20et%20al.%20-%202023%20-%20High%20Performance%205%20nm%20Si%20Nanowire%20FETs%20with%20a%20Record%20Small%20SS%20%3D%202%20.%203%20mV%20dec%20and%20High%20Transconductance%20at%205%20.%205%20K%20E.jpg?subformat=icon-640$$xicon-640$$yRestricted 001021851 909CO $$ooai:juser.fz-juelich.de:1021851$$pVDB 001021851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176845$$aForschungszentrum Jülich$$b0$$kFZJ 001021851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186864$$aForschungszentrum Jülich$$b1$$kFZJ 001021851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177006$$aForschungszentrum Jülich$$b2$$kFZJ 001021851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b3$$kFZJ 001021851 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH 001021851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b5$$kFZJ 001021851 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 001021851 9141_ $$y2023 001021851 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 001021851 980__ $$aconf 001021851 980__ $$aVDB 001021851 980__ $$aI:(DE-Juel1)PGI-9-20110106 001021851 980__ $$aUNRESTRICTED