Hauptseite > Publikationsdatenbank > Finding new bio-plausible Learning Rules using Deep Reinforcement Learning > print |
001 | 1021872 | ||
005 | 20250203103350.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2024-01020 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-01020 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Lohoff, Jamie |0 P:(DE-Juel1)192147 |b 0 |u fzj |
111 | 2 | _ | |a nternational conference on neuromorphic, natural and physical computing |g NNPC |c Hanover |d 2023-10-25 - 2023-10-27 |w Germany |
245 | _ | _ | |a Finding new bio-plausible Learning Rules using Deep Reinforcement Learning |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1710407181_31139 |2 PUB:(DE-HGF) |x After Call |
502 | _ | _ | |c RWTH Aachen |
520 | _ | _ | |a Gradient-based learning is still the best bet when training spiking neural networks on supervised tasks. Although backpropagation, the state-of-the-art in modern AI, is not bio-plausible, there exists a wide range of approximations with this property that achieve competitive performance, e.g. e-prop[1,2]. We propose a new framework called AlphaGrad that could find more such learning rules by systematically exploring the search space using Deep Reinforcement Learning and methods from Automatic Differentiation(AD). |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K) |0 G:(DE-82)BMBF-16ME0398K |c BMBF-16ME0398K |x 1 |
536 | _ | _ | |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399) |0 G:(DE-82)BMBF-16ME0399 |c BMBF-16ME0399 |x 2 |
700 | 1 | _ | |a Neftci, Emre |0 P:(DE-Juel1)188273 |b 1 |u fzj |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1021872/files/NNPC_poster.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1021872/files/NNPC_poster.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1021872/files/NNPC_poster.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1021872/files/NNPC_poster.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1021872/files/NNPC_poster.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1021872 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)192147 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)188273 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-15-20210701 |k PGI-15 |l Neuromorphic Software Eco System |x 0 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-15-20210701 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|