

Finding new bio-plausible Learning Rules using
Deep Reinforcement Learning

Jamie Lohoff1,2 and Emre Neftci1,2

1 Peter Grünberg Institut 15, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany,
2 Fakultät für Elektro- und Informationstechnik, RWTH Aachen, Aachen, 52074, Germany

Premise: Everything is a computational graph!

Results: So...was this good for anything?

Outlook: Where is the Neuromorphic Stuff?

Method: Making a chess AI do cool things
Abstract
Gradient-based learning is still the best bet when training spiking neural networks on
supervised tasks. Although backpropagation, the state-of-the-art in modern AI, is not bio-
plausible, there exists a wide range of approximations with this property that achieve
competitive performance, e.g. e-prop[1,2]. We propose a new framework called AlphaGrad
that could find more such learning rules by systematically exploring the search space using
Deep Reinforcement Learning and methods from Automatic Differentiation(AD).

References

We decided to use AlphaZero[4] to solve this task based on DeepMinds prior work on
AlphaTensor[5]. This agent is famous for beating the world champions of Go and chess in
a landslide victory.

What are its key components?
1.) Neural Network

2.) Monte-Carlo Tree Search (MCTS)

Neuron models, neural networks, ODEs and many other things in quantitative modeling can
be expressed as computational graphs.
These are directed acyclic graphs where every vertex corresponds to an elemental
mathematical operation such as an addition or a logarithm.
The edges describe the data dependencies. Below is an example of a computational graph.

Often, we need the gradient or Jacobian of such a graph to perform some optimisation task,
e.g. training a neural network or applying some solver, e.g. Newton-Raphson. A result from
AD states that we can compute the derivative in the graph picture through[3]:

Graphax is a byproduct of AlphaGrad.
It is a JAX[6] library that allows the user to do vertex elimination on a
computational graph.
It also supports other advanced AD features such as row/column
compression and is thus often faster than corresponding JAX
function transformations (see below).
This could be helpful to speed up and improve the memory
consumption of gradient-based learning rules like e-prop etc.

Comp. Graph Repr.,
e.g. adjacency matrix

Probability distribution over
vertices to eliminate next

Estimate of the cost/reward
of the vertex to eliminate

If we eliminate all the interior vertices, the remaining edges contain the full Jacobian of the
computational graph. The elimination order has an serious impact on the computational
cost. Can we find the optimal order w.r.t. number of multiplications, memory usage or
walltime? Is it possible to use this framework to compute approximations of Jacobians?

But how do we optimize for metrics of the Jacobian accumulation such as the number of
multiplications, memory requirements or walltime?
Entry Reinforcement Learning (RL). It allows us to optimize for almost every goal. RL is
very different from supervised learning. At the heart of RL lies the environment-
interaction loop, which exemplifies this.

In our case:
● Agent: Neural Network and

sampling method (here MCTS)
● Environment: Comp. Graph.
● State: computational graph repr.
● Action: eliminate a vertex
● Reward: The goal we wish to

optimize for, e.g. number of
multiplications or walltime

1.) We start by assigning the derivative
of the posterior vertex w.r.t. the prior
vertex to the respective edges.

2.) We use the vertex elimination rule
to remove vertices from the graph and
accumulate the derivatives.

[1] Bellec et al.: A solution to the learning dilemma for recurrent networks of spiking neurons, 2020,
Nature Communications

[2] Zenke&Neftci: Brain-inspired Learning on Neuromorphic Substrates, 2020, Proceedings of the IEEE

[3] Griewank&Walther: Evaluating Derivatives, 2008, SIAM

[4] Silver et al.: Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm, 2017, Nature

[5] Fawzi et al.: Discovering faster matrix multiplication algorithms with reinforcement learning, 2022,
Nature

MCTS is used to sample actions from observations by extrapolating the impact of the
selected action on the overall reward.
It performs a number of MC simulations to estimate the outcome of the entire game.
Our neural network guides the tree search to make it more efficient.
The probability distribution output is used to select an action in the expansion phase.
The reward estimation is used to replace the simulation/rollout phase.

The grand goal is to augument the vertex elimination method in such a way that it allows
systematic search for gradient-based, bio-inspired learning rules.

Unanswered questions are:
● How do we do the approximation in a mathematically meaningful way?
● How do measure the quality of the approximation?
● How do we include the temporal components?

[6] Bradbury et al., JAX: Composable transformations of Python+Numpy programs,
http://github.com/google/jax

The following results are unpublished, cherry-picked and not yet peer-reviewed.
We started by using the number of multiplications as our optimization target for
AlphaGrad and measuring the actual speed up we would gain from that:

Sadly, we were not able to create a
speedup for neural networks, as
backpropagation is mathematically
speaking the best you can do for
scalar functions in terms of number
of multiplications. For memory
consumption or pure walltime,
things will look different though.

All experiments were done on CPU.

	Slide 1

