001021903 001__ 1021903
001021903 005__ 20240712112912.0
001021903 0247_ $$2doi$$a10.1149/osf.io/ea8qm
001021903 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01051
001021903 037__ $$aFZJ-2024-01051
001021903 1001_ $$0P:(DE-HGF)0$$aDörner, Sven$$b0
001021903 245__ $$aDynamic lumped cell-level model of chemical membrane degradation in PEM electrolysis: Impact of pressure and time dependence
001021903 260__ $$c2023
001021903 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1706543670_27505
001021903 3367_ $$2ORCID$$aWORKING_PAPER
001021903 3367_ $$028$$2EndNote$$aElectronic Article
001021903 3367_ $$2DRIVER$$apreprint
001021903 3367_ $$2BibTeX$$aARTICLE
001021903 3367_ $$2DataCite$$aOutput Types/Working Paper
001021903 520__ $$aChemical membrane degradation has a significant impact on the lifetime of a PEM electrolyzer. For comprehensive understanding, cell-level models are useful. However, existing cell-level models ignore the dynamic consumption process of Nafion membrane fragments over time and do not consider the influence of operating parameters, such as pressure, on chemical membrane degradation. To address these limitations, we present a dynamic lumped cell-level model to analyze chemical membrane degradation as fluoride release rates. Parameter estimation with experimental literature data is performed using a pseudo-steady state approach. The model is used to investigate the influence of pressure. The results show increased fluoride release rates and H2O2 concentrations at higher pressures due to enhanced O2 crossover. They also suggest that the maximum in degradation rate at intermediate current densities is due to changing water flux across the membrane. Time-dependent simulations with full dynamics suggest that the maximum is reached after several thousand hours.
001021903 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001021903 588__ $$aDataset connected to CrossRef
001021903 7001_ $$0P:(DE-HGF)0$$aKinzl, Markus$$b1
001021903 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b2$$ufzj
001021903 7001_ $$0P:(DE-HGF)0$$aBongartz, Dominik$$b3$$eCorresponding author
001021903 773__ $$a10.1149/osf.io/ea8qm
001021903 8564_ $$uhttps://juser.fz-juelich.de/record/1021903/files/2023_Dynamic0D_degradation_ECSarXiv.pdf$$yOpenAccess
001021903 8564_ $$uhttps://juser.fz-juelich.de/record/1021903/files/2023_Dynamic0D_degradation_ECSarXiv.gif?subformat=icon$$xicon$$yOpenAccess
001021903 8564_ $$uhttps://juser.fz-juelich.de/record/1021903/files/2023_Dynamic0D_degradation_ECSarXiv.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021903 8564_ $$uhttps://juser.fz-juelich.de/record/1021903/files/2023_Dynamic0D_degradation_ECSarXiv.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021903 8564_ $$uhttps://juser.fz-juelich.de/record/1021903/files/2023_Dynamic0D_degradation_ECSarXiv.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021903 909CO $$ooai:juser.fz-juelich.de:1021903$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b2$$kFZJ
001021903 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b2$$kRWTH
001021903 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001021903 9141_ $$y2023
001021903 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021903 920__ $$lyes
001021903 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001021903 9801_ $$aFullTexts
001021903 980__ $$apreprint
001021903 980__ $$aVDB
001021903 980__ $$aUNRESTRICTED
001021903 980__ $$aI:(DE-Juel1)IEK-10-20170217
001021903 981__ $$aI:(DE-Juel1)ICE-1-20170217