001     1021905
005     20240712112912.0
024 7 _ |a 10.48550/ARXIV.2305.18338
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01053
|2 datacite_doi
037 _ _ |a FZJ-2024-01053
100 1 _ |a Mucci, Simone
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Cost-Optimal Power-to-Methanol: Flexible Operation or Intermediate Storage?
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1706620450_7629
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a The synthesis of methanol from captured carbon dioxide and green hydrogen could be a promising replacement for the current fossil-based production. The major energy input and cost driver for such a process is the electricity for hydrogen production. Time-variable electricity cost or availability thus motivates flexible operation. However, it is unclear if each unit of the process should be operated flexibly, and if storage of electricity or hydrogen reduces the methanol production cost. To answer these questions, we modeled a Power-to-Methanol plant with batteries and hydrogen storage. Using this model, we solved a combined design and scheduling optimization problem, which provides the optimal size of the units of the plant and their optimal (quasi-stationary) operation. The annualized cost of methanol was minimized for a grid-connected and a stand-alone case study. The optimization results confirm that storage, especially hydrogen storage, is particularly beneficial when the electricity price is high and highly fluctuating. Irrespective of the presence of storage, the whole Power-to-Methanol plant should be operated flexibly: even moderate flexibility of the methanol synthesis unit significantly reduces the production cost.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Optimization and Control (math.OC)
|2 Other
650 _ 7 |a FOS: Mathematics
|2 Other
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 1
|u fzj
700 1 _ |a Bongartz, Dominik
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
773 _ _ |a 10.48550/ARXIV.2305.18338
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021905/files/2305.18338-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021905/files/2305.18338-1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021905/files/2305.18338-1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021905/files/2305.18338-1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021905/files/2305.18338-1.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021905
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21