We will live on this planet at least for the next 10 000 years.

This statement leads to two GNEUS projects

We have time.

- There is no need to panic.
- We will have time to investigate the machinery of live (and other interesting phenomenon) in great depths.

GNEUS Project A: We will build a dedicated instrument for macromolecular crystallography on a HiCANS neutron source.

• Because this is the most cost efficient way to produce neutrons without adding too much entropy caused by the daughter nuclei of fission or the radioactivity of spallation.

How to get neutrons

Nuclear fission

Reactor based neutron source (ILL, FRM II, NIST, JINR, ANSTO a.m.m.)

Spallation

Spallation based neutron source (ESS, ISIS, SINQ, SNS, CSNS, J-PARC, KEK)

Nuclear processes

Accelerator based neutron source (LENS, RANS, HUNS, NUANS, IREN a.o.)

A 20 m instrument at the 96 Hz target station or a 80 m instrument at the 24 Hz target station?

Instrument						div			
Name	Source	Flux	neutron pulse	instrument length	rep rate	FWHM	total deltad/d at	given scatteri	ng angle
		n/s/cm^2	μs	m	Hz	° degree	5° 4!	5° 85	0
MANDI	SNS	4,50E+07	17,4	4 3	0 6	0,8	15,96%	1,40%	0,17%
EWALD	SNS		43,3	3 6	0 1	5 0,38	7,58%	0,68%	0,15%
iBIX	J-PARC	7,00E+07	500) 4	2.	5 0,2	4,69%	2,50%	2,47%
NMX	ESS		2860	15	5 1	4 0,1	4,14%	3,63%	3,63%
NMD	HBS 96Hz 20 m		254	4 20,	4 9	6 0,7	14,18%	2,75%	2,47%
NMD	HBS 24Hz 80m		666,7	7 8	2	4 0,7	14,06%	2,05%	1,65%

Design considerations: 1. Flux

- 2. Flux
- 3. Resolution in reciprocal space
- 4. Round or Flat top uniform beam profile

00. Monat 2017 Seite 5

The 80 m Single Crystal Diffractometer

Applications

• All kinds of powder samples

• Concept and Requirements

- TOF diffractometer using pulse shaping and wavelength frame multiplication
- Variable up to very high resolution

Choices

- Thermal moderator
- Low frequency (24 Hz, 667 μs)
- 80 m length (source to detector)
- Detector range: 7° 175°

Characteristics

- Bandwidth: 1.65 Å, standard: 0.75 2.4 Å
- d-range : 0.32 16.7 Å
- High-Resolution option (100 μs pulse)
 - 0.17 0.59% (θ >90°), 0.04% for 175°
 - Estimated flux at sample: 1·10⁶ n/(cm²s)
- High-Intensity option (667μs pulse)
 - 0.47 1.4% (θ>90°)
 - Estimated flux at sample: 5.108 n/(cm²s)

Comparison between the two instruments:

The 20 m instrument:

Color Scale Title 80 - 142.0 70 -- 124.3 60 - 106.5 **Monitor Pixles** 88.75 - 71.00 53.25 35.50 20 - 17.75 10 -- 0.000 20 30 40 50 60 70 80 Monitor pixels

The 80 m instrument:

The 80 m instrument offers twice the flux of the 20 m instrument in a wavelength band of 2-4 $\mbox{\normalfont\AA}$.

Disadvantage of the 80 m instrument: A lot of neutrons have to be absorbed near the sample position.

00. Monat 2017 Seite 7

Hands on experience for the GNEUS postdoc with a real sample: The Streptavidin story

Streptavidin and its ligand biotin are used as linkers on functionalized

surfaces

But a neutron structure at room temperature is still missing...

• ... and can be compared to Mona Sarter et al.

Scientific Questions to be adressed:

- 1. Does the use of polarized neutrons make sense at such an instrument?
- 2. How can one mitigate the problems associated with the non-uniform beamprofile of the 20 m instrument?
- 3. How can one assess to which unit cell size one can go using Monte-Carlo Simulations?
- 4. What is the performance of the 80 m instrument when it is optimised?
- 5. How can one account for the neutrons to be absorbed near the sample position? How much background do they produce?
- 6. Do we go out of line of sight from the moderator or do we use a time zero chopper?
- 7. Does pulse shaping make sense?
- 8. Does it make sense to go to a smaller bandwidths (1 A instead of 2 A) but afford a shorter instrument?

Secondment: Mirrortron, Budapest, Hungary

There is no alternative to 100% recycling.

- If we do not recycle 1 % it will pile up over the years.
- We have to tackle even the plastic waste which we have produced by now.
- We have to find ways to produce environmentally friendly plastic materials.

A part of the solution: GNEUS project B: Mechanistic insights into the enzymatic activity of PETases

PETase have been optimized by machine learning

An optimization process which took only a few weeks...

J. Am. Chem. Soc. 2023, 145, 19243-19255

Hydrogen atoms important for the catalytic process

• But they are not observed directly...

Scheme 1. Schematic Representation of the PETase's Reaction Mechanism

J. Am. Chem. Soc. 2023, 145, 19243–19255

X-ray structure with substrate bound, 1.3 A resolution

• A lot of unexplained difference density...

Ideas, questions...

- Can we use machine learning also to improve the crystallization conditions in order to get crystal volumes necessary for neutron diffraction?
- Is the optimization process of machine learning efficient? Does it produce new mechanisms?
- What is the largest contribution to the optimization by machine learning? Optimization of substrate binding, reducing the activation energy?
- How can neutron data sets be used as input for machine learning?
- Secondment: Felix Briza from Eitle Hoffmann Patentanwälte

Microspectroscopy as fall back solution...

Publication from Martin Weik:

J. Synchrotron Rad. (2009). 16, 163-172

PET – Polyethylenterephthalat

A very common type of plastic container

Thank you!