001021912 001__ 1021912
001021912 005__ 20240717202034.0
001021912 0247_ $$2doi$$a10.1039/D3DD00103B
001021912 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01060
001021912 0247_ $$2WOS$$aWOS:001112646600001
001021912 037__ $$aFZJ-2024-01060
001021912 082__ $$a004
001021912 1001_ $$0P:(DE-HGF)0$$aRittig, Jan G.$$b0
001021912 245__ $$aGibbs–Duhem-informed neural networks for binary activity coefficient prediction
001021912 260__ $$aWashington DC$$bRoyal Society of Chemistry$$c2023
001021912 3367_ $$2DRIVER$$aarticle
001021912 3367_ $$2DataCite$$aOutput Types/Journal article
001021912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721197442_12200
001021912 3367_ $$2BibTeX$$aARTICLE
001021912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021912 3367_ $$00$$2EndNote$$aJournal Article
001021912 500__ $$aDFG(466417970 within SPP 2331), RWTH(rwth1232 computing resources), BASF (United States)
001021912 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001021912 536__ $$0G:(GEPRIS)466417970$$aDFG project 466417970 - Graph-Basiertes Generatives Maschinelles Learnen für optimale Moleküle (466417970)$$c466417970$$x1
001021912 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021912 7001_ $$0P:(DE-HGF)0$$aFelton, Kobi C.$$b1
001021912 7001_ $$0P:(DE-HGF)0$$aLapkin, Alexei A.$$b2
001021912 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b3$$eCorresponding author$$ufzj
001021912 773__ $$0PERI:(DE-600)3142965-8$$a10.1039/D3DD00103B$$gVol. 2, no. 6, p. 1752 - 1767$$n6$$p1752 - 1767$$tDigital discovery$$v2$$x2635-098X$$y2023
001021912 8564_ $$uhttps://juser.fz-juelich.de/record/1021912/files/d3dd00103b.pdf$$yOpenAccess
001021912 8564_ $$uhttps://juser.fz-juelich.de/record/1021912/files/d3dd00103b.gif?subformat=icon$$xicon$$yOpenAccess
001021912 8564_ $$uhttps://juser.fz-juelich.de/record/1021912/files/d3dd00103b.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021912 8564_ $$uhttps://juser.fz-juelich.de/record/1021912/files/d3dd00103b.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021912 8564_ $$uhttps://juser.fz-juelich.de/record/1021912/files/d3dd00103b.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021912 909CO $$ooai:juser.fz-juelich.de:1021912$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021912 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001021912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b3$$kFZJ
001021912 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b3$$kRWTH
001021912 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001021912 9141_ $$y2023
001021912 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001021912 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-06-22T13:37:40Z
001021912 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-06-22T13:37:40Z
001021912 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021912 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-06-22T13:37:40Z
001021912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-30
001021912 920__ $$lyes
001021912 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001021912 980__ $$ajournal
001021912 980__ $$aVDB
001021912 980__ $$aI:(DE-Juel1)IEK-10-20170217
001021912 980__ $$aUNRESTRICTED
001021912 9801_ $$aFullTexts
001021912 981__ $$aI:(DE-Juel1)ICE-1-20170217