Home > Publications database > Gibbs–Duhem-informed neural networks for binary activity coefficient prediction > print |
001 | 1021912 | ||
005 | 20240717202034.0 | ||
024 | 7 | _ | |a 10.1039/D3DD00103B |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-01060 |2 datacite_doi |
024 | 7 | _ | |a WOS:001112646600001 |2 WOS |
037 | _ | _ | |a FZJ-2024-01060 |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Rittig, Jan G. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Gibbs–Duhem-informed neural networks for binary activity coefficient prediction |
260 | _ | _ | |a Washington DC |c 2023 |b Royal Society of Chemistry |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1721197442_12200 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a DFG(466417970 within SPP 2331), RWTH(rwth1232 computing resources), BASF (United States) |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 466417970 - Graph-Basiertes Generatives Maschinelles Learnen für optimale Moleküle (466417970) |0 G:(GEPRIS)466417970 |c 466417970 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Felton, Kobi C. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Lapkin, Alexei A. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 3 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1039/D3DD00103B |g Vol. 2, no. 6, p. 1752 - 1767 |0 PERI:(DE-600)3142965-8 |n 6 |p 1752 - 1767 |t Digital discovery |v 2 |y 2023 |x 2635-098X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021912/files/d3dd00103b.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021912/files/d3dd00103b.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021912/files/d3dd00103b.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021912/files/d3dd00103b.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021912/files/d3dd00103b.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1021912 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-Juel1)172025 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-06-22T13:37:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-06-22T13:37:40Z |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-06-22T13:37:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-30 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|