001021913 001__ 1021913
001021913 005__ 20240226075520.0
001021913 037__ $$aFZJ-2024-01061
001021913 1001_ $$0P:(DE-Juel1)185010$$aJunk, Yannik$$b0$$eCorresponding author$$ufzj
001021913 1112_ $$a2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT)$$cHsinchu$$d2023-04-17 - 2023-04-20$$gVLSI-TSA$$wTaiwan
001021913 245__ $$aVertical GeSn/SiGeSn GAA Nanowire n-FETs with High Electron Mobility
001021913 260__ $$c2023
001021913 3367_ $$033$$2EndNote$$aConference Paper
001021913 3367_ $$2DataCite$$aOther
001021913 3367_ $$2BibTeX$$aINPROCEEDINGS
001021913 3367_ $$2DRIVER$$aconferenceObject
001021913 3367_ $$2ORCID$$aLECTURE_SPEECH
001021913 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1706699556_5584$$xPanel discussion
001021913 520__ $$aVertical gate-all-around (GAA) nanowire (NW) FETs based on Si compatible group IV GeSn alloys are presented. The NW devices with diameter of 25 nm show an almost ideal subthreshold swing (SS) of 65 mV/dec at 300 K. The increased Sn content in the GeSn channel offers a larger population of electrons in the Γ -valley that exhibit a lower effective mass and larger mobility. This is confirmed by comparison of two fabricated devices with 10% and 8% Sn content channels, where the GeSn channel n-FETs with 10% Sn content shows larger ION and higher transconductance than the one with 8% Sn content. At low temperatures, the devices show a low SS of 9 mV/dec as well as a very sharp transition from subthreshold to on-state, revealing a high potential for cryo-CMOS applications.
001021913 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001021913 536__ $$0G:(BMBF)16ES1074$$aVerbundprojekt: Erforschung nanoelektronischer Höchstleistungs-Bauelemente für innovative Elektronik auf Basis neuer Materialsysteme - ForMikro-SiGeSn-NanoFETs - , Teilvorhaben: CVD-basierte Herstellung von SiGeSn-Halbleiterheterostrukturen und vertikalen (16ES1074)$$c16ES1074$$x1
001021913 7001_ $$0P:(DE-HGF)0$$aFrauenrath, Marvin$$b1
001021913 7001_ $$0P:(DE-Juel1)176845$$aHan, Yi$$b2$$ufzj
001021913 7001_ $$0P:(DE-Juel1)186864$$aSun, Jingxuan$$b3$$ufzj
001021913 7001_ $$0P:(DE-Juel1)188576$$aConcepción Díaz, Omar$$b4$$ufzj
001021913 7001_ $$0P:(DE-Juel1)177006$$aBae, Jin Hee$$b5$$ufzj
001021913 7001_ $$0P:(DE-HGF)0$$aHartmann, Jean-Michel$$b6
001021913 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7$$ufzj
001021913 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b8$$ufzj
001021913 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b9$$ufzj
001021913 909CO $$ooai:juser.fz-juelich.de:1021913$$pVDB
001021913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185010$$aForschungszentrum Jülich$$b0$$kFZJ
001021913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176845$$aForschungszentrum Jülich$$b2$$kFZJ
001021913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186864$$aForschungszentrum Jülich$$b3$$kFZJ
001021913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b4$$kFZJ
001021913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177006$$aForschungszentrum Jülich$$b5$$kFZJ
001021913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
001021913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b8$$kFZJ
001021913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b9$$kFZJ
001021913 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001021913 9141_ $$y2023
001021913 920__ $$lyes
001021913 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001021913 980__ $$aconf
001021913 980__ $$aVDB
001021913 980__ $$aI:(DE-Juel1)PGI-9-20110106
001021913 980__ $$aUNRESTRICTED