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framework for the early phases of process development. Based on
Gaussian Process Regression, the framework is already applicable
at Technology Readiness Level 2. To overcome the limited LCA
data availability, we employ an encoder—decoder network in
combination with transfer learning to achieve a latent representa-
tion as a condensed molecular descriptor. We further propose to integrate not only molecular but also process descriptors, e.g,, the
stoichiometric sum of the reactants” impacts. Thereby, we can distinguish between process alternatives and incorporate changes in
the background systems. The framework is compared to state-of-the-art predictive LCA approaches and shows increased prediction
accuracy in terms of the coefficient of determination of R* = 0.61 for the global warming impact compared to an R* = 0.3 in former
studies. Highly relevant features are the stoichiometric sum of the reactants’ impacts and the condensed molecular descriptors.
APPROPRIATE supports decision making in early process development stages by allowing the distinction between process
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Process
descriptor

alternatives and quantifying predictions’ uncertainty.
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Bl INTRODUCTION

The integration of environmental objectives into process
development is key to a sustainable chemical industry. To
maximize environmental savings at low costs, the environ-
mental assessment must be integrated in early process
development stages.'

A holistic and standardized method for assessing environ-
mental impacts is life cycle assessment (LCA).” LCA is holistic
in two aspects: First, LCA takes into account the entire life
cycle of a process or a product starting with the provision of
feedstocks and energy, through the production and use of the
product, to its recycling or final disposal at the end of its life.
Second, LCA includes several types of environmental impacts.
Therefore, LCA prevents problem shifting between life cycle
phases as well as between environmental impacts.

However, due to its holistic nature, LCA requires a
significant amount of data, which is usually not available in
the early process development stages.” Furthermore, when
conducting an LCA for an emerging technology, the time of
modeling differs from the modeled point in time, ie., the
technology is usually considered to be scaled up on an
industrial scale at a future date. As a consequence, external
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influences in the background system, ie., supply processes
outside the considered system boundary, that could change in
the future must be considered accordingly.

To overcome these challenges, predictive LCA approaches
have been presented. These predictive LCA methods use a
regression model to predict the environmental impact of a
chemical of interest based on easily available descriptors, e.g,,
physical properties such as the molar mass or the number of
various functional groups. Common regression models used
are multilinear regression,S’6 Artificial Neural Networks
(ANN),”™'% or decision trees.'" In the following, we briefly
summarize the employed models, before discussing the
prediction accuracies for the example of global warming
impacts (GWIs).
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In pioneering work, Wernet et al.” compared the prediction
accuracy of an ANN with linear regression predicting cradle-to-
gate environmental impacts of organic chemical production.
The multilinear regression model proposed by Calvo-Serrano
et al.” includes molecular and thermodynamic descriptors of
the product to predict environmental impacts. Song et al.” also
developed a multilayer ANN to estimate environmental
impacts for chemicals based on molecular structure descrip-
tors.” Baxevanidis et al.'> recently compared six linear and
nonlinear regression models for predictive LCA: multiple
linear regression, principal component regression, partial least-
squares, Kriging (which equals Gaussian Process Regression),
radial basis functions, and a combination of radial basis
functions with principal component analysis. Their radial basis
function approach corresponds to a single-layer neural network
with a radial basis function as activation function in the hidden
layer."?

The discussed predictive LCA models can be compared for
the example of GWI, which is reported in all studies. The
comparison reveals an overall poor prediction performance:
Wernet et al.” report a squared Pearson’s coefficient of
approximately p* = 0.6. (Wernet et al. name the error measure
“Pearson’s correlation coefficient (R?)”. However, Pearson’s
correlation coefficient is usually referred to as p and used for
evaluating correlations between targets and descriptors of
regression models rather than for prediction accuracy.
Therefore, the authors of the present work assume that
Wernet et al. used the squared Pearson coefficient p?, which is
common for the evaluation of regression models. However, the
squared Pearson’s coefficient p” is not equal to, and cannot be
compared to, the more generally valid coeflicient of
determination (R*)."* For the evaluation of prediction
accuracy on test data, the squared Pearson’s coefficient p*
yields higher values than the coefficient of determination R*
and thus, should not be used for assessing prediction
accuracy.)'* The improved model published in Wernet et
al.® achieves a coefficient of determination of R* = 0.41.
Similarly, Song et al.” state a coefficient of determination of R*
= 0.48 on the test set. Calvo-Serrano et al."* reported relative
errors in the range of 20—44% using leave-one-out cross-
validation. However, a high predictive performance in a leave-
one-out cross-validation is a necessary but not sufficient
condition for high predictive power in general.'® Thus,
evaluating the prediction quality requires an external test
set.'® Baxevanidis et al.'” published coefficients of determi-
nation ranging from 0.1 to 0.26 on their GWI test set. The
highest prediction performance is achieved using partial least-
squares. In contrast, the Kriging model achieves the lowest
accuracy. However, the high R* of 0.97 on the training set
suggests that the model was heavily overfitted.

All these studies have in common that they use molecular
descriptors as input and thus provide component-specific
predictions. However, to be able to compare and, if necessary,
exclude process alternatives at an early stage of development, a
process-specific prediction is required. A first approach for
process-specific predictions was presented in our earlier
conference publication.'’ In that study, we introduced process
descriptors that can encode the reaction equation of the
considered technology and thus allow us to distinguish
between process alternatives. However, the model accuracy
was very low due to limited training data."

Karka et al.'' propose decision trees to classify the expected
environmental impact of a chemicals’ production into low,
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medium, or high. This approach is based on if—then rules,
which use a set of critical parameters of the process chain, e.g,,
the product’s molecular structure and process chain-related
variables corresponding to chemistry, complexity, and generic
process conditions, e.g., the solvent used or the percentage of
energy integration. Unfortunately, this process information is
not available at early process development stages.

Karka et al."” recently compared their decision trees'' with a
process-specific ANN. The authors use 91 impacts of biobased
processes as training data and up to 30 molecular and process
descriptors as input. Despite the limited training data, the
ANN achieves high prediction accuracies of 0.55 to 0.72 as
coefficient of determination for GWI, depending on the
allocation method and descriptors used. The model still uses
the descriptors published in Karka et al,,'" which are usually
not available at early process development stages. Furthermore,
the descriptors used do not consider changes in the
background system.

A general drawback of predictive LCA approaches is the
dependence on the data basis used to train the models. Data-
inherent errors and uncertainties due to noise, false
information, or oversimplifying assumptions made in the
database setup are propagated in the learning model. Common
LCA databases contain approximately 500 chemicals.'®
However, the data underlying these chemicals is often not
based on real manufacturing plants but relies on proxies.”” In
addition, the reported product-specific impacts are not based
on a consistent methodology. For example, different back-
ground systems or allocation methods are used for different
chemicals. As a result, the regression model is often trained on
inconsistent data, thereby worsening prediction accuracy.
Consequently, the obtained predictions are less meaningful.
In addition, the low data availability requires limiting the input
size of the trained regression model to prevent overfitting.

In conclusion, a predictive LCA model is required which (1)
provides a high information density in the used inputs to tackle
the challenge of limited LCA data sets available and (2) allows
for process-specific prediction to distinguish between process
alternatives.

Thus, in this work, we propose a predictive LCA framework
consisting of an encoder—decoder neural network and a
Gaussian Process regression (GPR), allowing for process-
specific prediction of the GWI of organic molecules with high
information density in the input. We use transfer learning to
train an encoder—decoder neural network translating the
molecular structure given as a graph to SMILES.”” The
resulting latent representation captures the most relevant
information on the molecular structure and thus provides a
condensed molecular representation. Due to the transfer
learning on a second chemical database without LCA data,
the limited data availability of the LCA data is overcome. The
process-specific prediction is enabled through the use of newly
introduced process descriptors. As a result, our predictive LCA
framework allows us to distinguish between process alter-
natives and to incorporate changes in the background system
with acceptable prediction accuracy.

This work is structured as follows: First, a set of suitable
descriptors is developed including the latent representation
and fully automatically derived process descriptors. Next, the
overall predictive LCA framework is explained. In the results,
we first compare the prediction performance of our framework
to current predictive LCA approaches from literature. We
discuss the influences of specific descriptors on the prediction
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Figure 1. Schematic illustration of the encoder—decoder neural networks. z

an enote € latent representation vector an € predicte
d § denote the latent representati tor and the predicted

sequence, i.e., the SMILES, respectively. (a) Autoencoding structure, which reproduces the input SMILES «. (b) Translational framework, wherein
the molecular graph consisting of nodes V and edges E is translated into a latent representation. The latent representation is subsequently translated

into a SMILES sequence.

performance and uncover correlations between the most
influential descriptors and contributions to the GWIL We
then discuss the particular characteristics of the process
descriptors in more detail. Finally, we draw conclusions on
our findings and suggest further steps.

B DEVELOPMENT OF A SUITABLE SET OF
DESCRIPTORS

We define the term early process development stage as referring
to the Technology Readiness Level (TRL) 2.”' According to
Buchner et al,”’ who adapted the TRL scale to chemical
processes, the chemical reaction is selected at TRL 2.
Therefore, at this level, only the molecular structure of the
main product and the gross reaction equation are known.
Subsequently, at TRL 3, the effort for process development
increases substantially, as the reaction kinetics have to be
determined, physical properties and catalyst synthesis have to
be carried out, and first process concepts have to be tested.”'
Thus, the first environmental assessment of the emerging
technology should be carried out before TRL 3 is reached. As a
result, only available models inputs are the molecular structure
of the main product, e.g, given by the SMILES code,”® and a
gross reaction equation.

Thus, all derived features must be fully obtained by
predictive models, e.g., by quantum mechanics and statistical
thermodynamics. As molecular descriptors, we consider several
functional groups, e.g, UNIFAC main and subgroups,12 and
the number of specific atoms and bonds. Additionally, we
include thermodynamic properties obtained from quantum
mechanical calculations in Gaussian,” using geometries and
frequencies from B3LYP/TZVP, and energies from the
b2plyp/aug-cc-pVQZ level of theory. We use statistic
thermodynamics from COSMO-RS** on the TZVP level to
predict further thermodynamic properties such as boiling
points or aqueous solubility. These commonly used softwares
are selected since they allow for full automation of the
predictions.

Additionally, the predictive LCA framework should be
capable of distinguishing between process alternatives. Thus, in
this paper, process descriptors are introduced, which can be
also obtained fully predictively. To provide a condensed
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molecular representation and to overcome data limitations, an
encoder—decoder approach in combination with transfer
learning is introduced afterward. A list of all considered
descriptors is given in the Supporting Information.

Condensed Molecular Descriptors: Latent Represen-
tations Using Encoder—Decoder Neural Networks.
Encoder—decoder neural networks (EDNN) consist of two
neural networks:*> An encoder network encodes a source into
a fixed-length continuous vector, i.e,, the latent representation.
Afterward, a decoder network translates the latent representa-
tion into an output. However, in contrast to autoencoders, the
output is not necessarily a copy of the input but a translation
into an alternative format, e.g., the trivial name of a chemical is
translated into the SMILES representation.”®

The SMILES code is employed to describe the molecule and
thus generate molecular features as input to the machine
learning model. However, while the SMILES code is a string
representation that follows a specific grammar, this grammar
gets completely lost during the classical translation of the string
into a numeric representation, e.g., using one-hot encoding, to
be used as a feature for a predictive model.?” In contrast, we
generate a numerical representation that contains more
information about the underlying grammar of the molecule.
For this purpose, we connect two neural networks in series (cf.
Figure 1), which learn to generate a condensed latent
representation z from the generic string representation, i.e.,
the encoder, and to predict the original string again from this
latent space, i.e., the decoder. The final framework then uses
only the encoder to generate the latent representation given
the molecular structure as SMILES. This latent representation
can then be used as a feature in the second step for the
predictive LCA model.

We consider two EDNN frameworks in this work: (1) an
autoencoder using a convolutional neural network as encoder
and a recurrent neural network as decoder (CNN2RNN) as
proposed by Gomez-Bombarelli et al.”® (cf. Figure 1a) and (2)
and a translating encoder—decoder neural network consisting
of a graph neural network as encoder and a recurrent neural
network as decoder (GNN2RNN) (Figure 1b). A CNN2RNN
autoencoder has already been successfully used to translate the
SMILES of a molecule into a latent representation, which was
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subsequently used to predict chemical properties.”*** Thus, in
this work, the CNN2RNN autoencoder is also trained to copy
the SMILES. The second framework is based on a translation
from a molecular graph representation to a SMILES encoding.
This approach is motivated by the recent success of GNN in
machine learning applications for chemicals.”? ™% Afterward,
the obtained latent representations are used as molecular
features for the predictive LCA framework.

Using an encoder—decoder neural network to generate a
latent representation from the molecular structure as a feature
for predictive LCA has two advantages: First, the training of
the EDNN frameworks is not limited by the limited data
availability of the LCA database. Instead, the latent
representation can be trained on numerous data from open-
source databases, e.g., the (1M933’34 or the ZINC database,*
which contain several thousand molecules. The QM9 database
focus on small organic molecules with up to 9 heavy atoms
(i, any atoms other than hydrogen), while the ZINC
database consists of drug-like chemicals. Both databases are
commonly used databases in the context of cheminformatics.*®
Second, the latent size can be used to adjust the compression
of the features. Due to the limited availability of LCA training
data, the input space of the regression models in the predictive
LCA framework has to be significantly reduced to avoid
overfitting. Thus, a compressed latent representation increases
the information density in this input for the regression model.
However, with decreasing latent size, the information loss in
the latent representation increases (cf. Figure S1). In the
following, the latent size is first fixed to d = 20. Afterward, this
assumption is confirmed in the results by assessing the
prediction performance of the predictive LCA framework for
varying latent sizes.

Comparison of the Encoding—Decoding Perform-
ance. We trained the CNN2RNN and the GNN2RNN
framework on a training set combining data from the QM9 and
the ZINC database and measures the prediction performance
on a test set consisting of 166 unique chemicals. This test set
consists of all chemicals, which are also included in the LCA
training set, and can thus be used afterward to train the
predictive LCA framework. The prediction performances are
compared in terms of the cross-entropy (cf. Supporting
Information for details) on the predicted SMILES from the
decoder (Figure 2).

20
o
15} :
> o
§ o
§ 10} 1
2 8
2 o
O
5 8 a
1.04
% 0.63
CNN2RNN GNN2RNN

Oindividual loss of one chemical
—average loss

Figure 2. Comparison of the prediction accuracy for the CNN2RNN
and a GNN2RNN framework in terms of the cross-entropy on the
reproduced SMILES. The black bars indicate the mean cross-entropy
over all 166 unique chemicals, while individual losses are plotted by
the circles.
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The CNN2RNN framework achieves an averaged cross-
entropy of 1.04 (black bar), while the GNN2RNN achieves an
averaged cross-entropy of 0.63. Generally, a cross-entropy
smaller than 0.7 is preferred, since this value refers to an
averaged probability greater than 50% for the correct decoding:

~In(j) = ~In(0.5) = 0.7 (1)

Since all probabilities over the possible tokens sum up to
100%, a probability greater than 50% already indicates the
correct prediction. Thus, the GNN2RNN framework is
beneficial for two reasons: The averaged cross-entropy is
lower than the averaged cross-entropy of the CNN framework,
and the averaged cross-entropy is lower than 0.7. Additionally,
the spread of the cross-entropy over the test set is decreased
with a maximum cross-entropy of 6.64 compared to the
maximum cross-entropy of 16.8 for the CNN2RNN frame-
work. In both frameworks, the highest cross-entropies are
observed on small molecules consisting of two heavy atoms,
e.g., methyl chloride, methanol, formaldehyde, hydrogen
cyanide, or hydrogen peroxide. However, this observation is
expected due to the increased statistical significance of an
incorrect prediction of a character in a small molecule than in a
large one.

A potential explanation for the success of the GNN2RNN
framework could be drawn from the comparison to hlgh order
group-contribution methods. Marrero and Gani’’ introduce
groups of second- and third-order to incorporate the spatial
positioning of the groups and state an increased prediction
performance for physical and thermodynamic properties.
Similarly, the CNN2RNN framework only considers certain
groups in the SMILES, whereas the GNN2RNN framework
can also consider the relationships between the groups through
the molecular graph as input.

In conclusion, the GNN2RNN framework outperforms the
CNN2RNN framework, and thus, the subsequent evaluations
are done with the GNN2RNN framework.

Predictively Available Process Descriptors. The latent
representation is a condensed molecular representation that
describes the main product of a process. In contrast, process
descriptors contain information about the process itself and
thus, aim to estimate process-related emissions more directly.
A chemical process has four emission sources in a cradle-to-
gate system boundary:'” (1) the emissions related to the
feedstock supply, (2) emissions caused by the energy supply,
(3) emissions caused by the auxiliary supply, and (4) direct
process emissions. Thus, suitable process descriptors should
also be able to describe all four sources of emissions. The
collection used in this work is introduced in the following
sections.

1. Feedstock-Related Emissions. The feedstock-related
emissions are encoded by the stoichiometric sum of the
reactants’ impacts:*®

EIstmchmmetrIC,l = Z [ (2)

wherein k denotes the running variable over all reactants and i
is the regarded product. y; and ;. denote the stoichiometric
coeflicients of the reactant and the product, respectively, and
M;, M, describe the molar masses. EI, describes the
environmental impact of reactant k. Following Patel et al.,**
the allocation factor 4, is calculated economically based on the
product prices if required to account for valuable byproducts:

Cross— entropy

mMEL |
uM;-X-S
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Figure 3. Flowsheet considered for automatized flowsheeting according to the Douglas hierarchy.* The electricity demand, power P,, is considered
as the value required to pressurize the reactants from standard pressure to reaction pressure py. The heat demand is summed from the heat demand
Qigearx required to heat the mixture from standard conditions to reaction temperature T, the heat supply or removal to keep the reactor isothermal
Q AgH and the distillation energies Qg - In addition, a flash is implemented in accordance with ref 42 to separate gaseous from liquid phases before

entering the distillation section. However, the flash is neglected in this illustration since it requires no additional energy. Furthermore, we neglected
recycling, since otherwise the stoichiometric sum of the reactant’s impacts is always determined for 100% yield.

For example, if a reaction produces chemicals A and B with
market prices of 1000 and 2000 $ per ton, then we assign 2/3
of the environmental impacts to chemical B. For further
information on the concept of allocation factors to handle
multifunctional processes in LCA, the reader is referred to ISO
14040, Jung et al.,”” Heijungs and Guinée,” and Heijungs
and Frischknecht.*' For the calculation, a conversion X and
selectivity S are assumed to be 85% and 100%, respectively, i.e.,
side-products caused by a second, simultaneous reaction are
neglected. This approach allows us to keep a fixed flowsheet
for all reactions. The resulting errors need to be corrected by
the data-driven model.

2. Energy-Related Emissions. The energy-related emissions
are encoded by descriptors that are a further development of
the indicators proposed by Patel et al.*® Based on the gross
reaction equation and the thermodynamic properties of all
involved components calculated by quantum mechanics, the
Gibbs free energy of the reaction ARG and the reaction
enthalpy ARH are calculated as additional process descriptors.
The reaction enthalpy ApH indicates whether the reaction is
endothermic or exothermic and could therefore correlate with
the reaction section’s energy requirements.

Furthermore, the number of byproducts of the regarded
process and the minimum difference in the boiling points are
used as descriptors since a correlation between these indicators
and the separation effort of the process is assumed.

To obtain further quantitative descriptors encoding the
process energy demand and thus correlating with the energy-
related emissions, an automatized flowsheeting approach
according to the Douglas Hierarchy® is used. Following
Douglas,” we consider only reactions in the gas and the liquid
phase. The generalized flowsheet consists of a compressor/a
pump, a heat exchanger, a reactor, and several distillation
columns (Figure 3).

In a first step, the reactants are brought from ambient
pressure to reaction pressure pp. The reaction temperature and
pressure can be obtained, for example, from the machine
learning approach proposed by Gao et al,*’ which is publicly
available. However, the integration of this model into the
presented framework of this work is out of scope. Thus, the

9307

reaction conditions are provided manually as additional input.
When no reaction conditions are available, standard conditions
are assumed. The pressure increase is assumed as adiabatic
compression of an ideal gas, including interstage cooling, or as
a pump of ideal liquids.

The compressed mixture is brought to reaction temperature
Ty in the subsequent heat exchanger. The temperature-
dependent enthalpies of formation for each component and
the enthalpies of vaporization are obtained by quantum
mechanical calculations and COSMO-RS.

In the third step of the flowsheet, the reactor, a simultaneous
chemical and phase equilibrium, is calculated as proposed by
Scheffczyk.** The required NRTL parameters are predicted
using COSMO-RS. The reaction enthalpy is assumed as the
heating or cooling demand of the reactor. Additionally, we
consider a stoichiometric reactor with fixed yield, here assumed
to be 85%, as an alternative reactor model.

The choice of the reactor model significantly influences the
overall estimated energy demand. A comparison of the reactor
models and their influence on the energy demand of the
process is given in the Supporting Information. In conclusion,
the stoichiometric reactor outperforms the equilibrium-based
reactor because the equilibrium reactor calculates low
conversion rates (<50%) for 41 of 301 processes. These low
conversion rates lead to a strong increase of the separation
energies resulting in largely overestimated process energies in
total (cf. Figure Sa).

As the last step, the reactor output is separated into pure
product streams using a sequence of distillation columns. The
sequence is designed following the design procedure proposed
by Douglas,”” starting with the sorting of all components in the
reactor outlet according to their boiling points. Afterward, the
components are classified as product, recycle, or waste stream.
Recycle and waste streams with neighboring boiling points are
not further separated as these streams can be recycled or
disregarded in a none-pure state. Product streams are always
fully purified (sharp splits). The number of output streams
then determines the number of columns. The sequence order
of columns is defined by the boiling points of the head
products, starting with the separation of the lowest boiling
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Figure 4. Algorithm of the proposed framework for predictive life cycle assessment.

component. The component to be purified is assumed to be
always separated as the head product. Thus, the distillation
sequence also specifies the mixture compositions in each
distillation column. The required separation energy for each
distillation column is calculated with a pinch-based process
model*>*¢ or using process shortcut equations.”” The required
NRTL and Antoine parameters for the pinch-based process
model are estimated using COSMO-RS and are thus obtained
fully predictively. Similarly, the Antoine parameters required
for the shortcut equations are obtained from COSMO-RS.

In contrast to the reactor models, the choice of the
distillation model has little influence on the overall predicted
energy demand of the process (cf. Figure S6). Thus, a
stoichiometric reactor is used in combination with the shortcut
equation describing the distillation columns for subsequent
analyses.

The overall generalized flowsheet is used to estimate the
heat and power demand for the process as additional
descriptors. Details on the modeling assumptions and the
estimated energies are given in the Supporting Information.

Furthermore, an approximated impact EIj ¢, is calculated
as the sum of the stoichiometric sum of the reactants’ impacts
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Eloichiometric (€9 2) and the impact due to the estimated energy
supply according to

EIheuristics = EIstoichiometric + Z ISj 'Ej
j

with j € {heating, cooling, electricity} (3)
where IS denotes the specific impacts per MJ energy E,
including heat, cooling energy, and electricity. Additionally, the
process shortcuts are used to quantify further descriptors
proposed by Patel et al,*® e.g., the mass fraction of the product
or water at reactor outlet.

3. Auxiliary-Related Emissions. The required auxiliary
materials, e.g., solvents or catalysts, of a process are not yet
known in TRL 2 and are highly dependent on the process
design. In addition, in conventional LCA studies, the
influences of these auxiliary materials are often neglected due
to a lack of data.”” Therefore, no descriptors for auxiliary
materials are proposed in this work.

4. Direct Process Emissions. Direct emissions occur as an
undesired side product during the production of the actual
main product. The emissions therefore do not necessarily
consist of the same elements as the main product but also may
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contain elements of the byproducts produced according to the
reaction equation. While the elements of the main product are
already contained in the molecular descriptors describing the
main product, further descriptors are needed to describe the
elements in the byproducts. Thus, a measure inspired by the
carbon efficiency of the Green Chemistry metrics™ is the
number of specific elements in the byproducts. The number is
normalized by the products’ mass according to the functional
unit of 1 kg product of the predictive LCA yielding the direct
emissions coefficient:

ni,by—product

fi = ie {C, F, Cl, Br, N}

(4)

The considered elements were chosen to represent all relevant
emissions that have significant influences on the ReCiPe 2016
v1.1l impact categories.51

mproduct

B PREDICTIVE LCA FRAMEWORK

We propose a fully automatized framework (Figure 4) to
predict cradle-to-gate environmental impacts using only the
molecular structure of the main product and the gross reaction
equation as input, which is thus already applicable at TRL 2.
The framework consists of 6 steps: (1) the data collection, i.e.,
the development of a consistent target database and suitable
descriptors, (2) the splitting of the data set into three subsets,
(3) the scaling, (4) the feature selection, (S) the automatized
model setup, and finally (6) the prediction.

In a first step, we develop a consistent data set of GWIs of
chemical processes, which is crucial for the training of machine
learning models.”” The GWI is studied as an exemplary impact
category. However, the proposed framework can be applied
accordingly to any other impact category.

Parvatker and Eckelman®® have shown that process
simulations are one of the best methods to generate Life
Cycle Inventories when primary plant data is not available.
Therefore, the LCA data set is developed based on the Process
Economics Yearbook by IHS Markit,>* using all contained
processes from Germany (1692 processes) due to good data
availability. This economic database is based on press releases,
patents and advanced process simulations, providing the
highest quality inventory data available for a wide range of
processes.”” Since the proposed LCA framework aims at
predicting the production emissions of chemicals, processes
not directly describable with a reaction equation are excluded.
An example would be a purification process in which no
reaction occurs and only a stream is concentrated. As a result,
1178 processes are removed resulting in 514 remaining
processes for further preprocessing. In a next step, all processes
with the same gross reaction equation but different impacts,
e.g., due to different process flowsheets for the same reaction,
are averaged to obtain one impact per gross reaction equation
(310 remaining processes with unique reaction equation).
Furthermore, a k-means cluster algorithm™ is applied on the
descriptors to identify similarities in the represented processes
and to define outliers. In an iterative process, first, the number
of clusters is optimized using the elbow method.’®*” Then,
clusters containing less than 3% of the processes are identified
as outliers and removed from the data set. Afterward, the steps
are repeated until each cluster contains less than 80% of the
processes. In total, 3 processes are identified as outliers and
removed. Last, all processes with a GWI greater than 20 CO,-
eq are removed to ensure a well-balanced training set (see
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Supporting Information for a detailed discussion). The final
data set O includes 304 unique processes producing 166
unique chemicals (S0 aromatic and 116 aliphatic compounds).
This data set contains the targets to be predicted by the
machine learning model, ie, the GWIs y, as well as the
descriptors describing the processes X.

This data set is then split into three subsets to avoid
overfitting and to finally allow for an unbiased evaluation of the
overall framework: the training set D, the validation set
D,.i4» and the test set D, . The validation set of 10% of the
data samples is used to set up the chosen regression model. A
test set of 20% of the data samples is withheld from the
framework to test the optimized model. Thus, an unbiased
performance evaluation of the overall framework is possible.

To ensure a complete representation of the data set domain
and characteristics in each subset and thus reduce the model’s
uncertainty, the distribution in training and validation or test
set has to be similar. Therefore, 10° data splits are randomly
generated, and the divergence between the set distributions is
measured using the Kullback—Leibler (KL) divergence.’®
Then, the set split with minimum divergence is selected,
indicating maximum similarity between the training and
validation or test set, respectively.

Based on the training set, the input matrix is scaled using the
Robust Scaler from Scikit-Learn.”® Next, the data sets’
dimension is reduced by selecting a suitable subset of features
from all collected descriptors using sequential forward
selection.’” An overview of all considered descriptors and the
finally used features for the regression models is given in the
Supporting Information. The scaler and the indices of the
selected features are then passed to the validation and the test
set to process those input matrices similarly to the training set.
However, no information from the validation and test set is
incorporated in the scaling range or the selected features. As a
result, these sets still allow for a sound evaluation of the
prediction performance during the model setup or the final
performance of the overall framework.

The dimensionally reduced training set is then used for
training the regression model, while the dimensionally reduced
validation set is used for the automated model setup, i.e., the
hyperparameter optimization. The final model is defined by
optimal parameters 0% and optimal hyperparameters A*. This
final model is then applied to the test set D, to predict the
GWIs j and to quantify the overall prediction performance of

est*

the framework.

Considered Regression Models. For predictive LCA to
be used as a decision support tool in early stages of process
development, the regression model must not only provide
predictions with sufficient accuracy but also be able to quantify
the uncertainties of its predictions. A promising model is
therefore Gaussian process regression (GPR). As a Bayesian
modeling approach, the GPR does not only learn a single
parameter but a probability distribution of parameters.”’
Gaussian Process Regression can thus be seen as a Gaussian
distribution over functions.”’ Based on the probability
distribution, a single-valued estimation can be obtained by
the mean of the distribution. The distribution itself reflects the
uncertainty of the prediction. In the following, we therefore use
a GPR as regression model in our predictive LCA framework.
To compare the predictive performance with current literature
predictive LCAs, we set up an additional framework using an
ANN as regression model.
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The GPR is implemented using the Scikit-Learn package.””
The kernels are optimized using the Automatic Model
Construction approach proposed by Duvenaud.”” The
maximum number of basic kernels is set to 5 to avoid
overfitting. The prior mean is assumed to be zero since
deviations from this mean can be modeled by an additional
kernel and are thus captured in the automated setup. Overall,
100 iterations of a greedy search are performed wherein base
kernels are combined by addition, multiplication or replace-
ment. As base kernels, we consider the following kernels:
squared-exponential, rational quadratic, periodic, linear and
constant kernels. A detailed explanation of these base kernels
and how to express structures with a series of base kernels can
be found in Duvenaud.”

Applied to the training set used in this work, the
compositional kernel search proposed a combination of linear
(Lin) and squared exponential (SE) kernels to represent the
underlying covariances in the LCA data. The multiplication
with a squared exponential kernel converts any global
correlation into a local correlation since the squared
exponential function decreases monotonically to 0 with
increasing distance between two inputs. In contrast, the
multiplication with a linear kernel only causes the standard
deviation of the model to vary linearly and thus does not affect
the correlation of the inputs.

Two kernel combinations are optimized, once for a
component-specific and once for a process-specific framework.
The resulting kernel combinations are summarized in Table 1.

Table 1. Optimized Kernel Structure for the Gaussian
Process Regression”

kernel structure
SE-Lin + Lin*
SE-Lin® + Lin®

data set

component-specific

process-specific

“The compositional kernel search from Duvenaud found a
combination of squared exponential (SE) and linear (Lin) kernel
for the predictive LCA model to be most promising to model the
GWI based on molecular descriptors only (component-specific) and
the combination of molecular and process descriptors (process-
specific).

Applying the rules of the automated description generation
from Duvenaud®® on the created kernel compositions, the
kernel search uncovered a smooth function with linearly
varying amplitude and a quadratic function between the
molecular descriptors and the GWI. Similarly, the kernel
combination for the process descriptors can be interpreted as
smooth function with polynomially varying amplitude and a
quadratic function.

The automated setup of the ANN includes two steps: the
hyperparameter optimization providing optimal hyperpara-
meters A%, which describe the architecture of the ANN, and
the training of the final model leading to optimal model
parameters 6*. The ANN is implemented via the tensorflow

package,”® and the hyperparameter optimization is undertaken
using the optuna package.®*

The following hyperparameters are optimized: the activation
function, the number of layers and neurons per layer, the
regularization and learning rates, the number of epochs, and
the batch size. As activation functions, the four most common
functions are considered: hyperbolic tangent, sigmoid, rectified
linear unit, and exponential linear unit. The ranges for the
number of layers and neurons per layer are chosen to be [2; S]
and [4; 512], respectively. The limits of the regularization and
the learning rate are set to [107%; 1072]. The number of epochs
is limited to the range [50; 1000], and the batch size is chosen
to be within [2; 64]. The bounds for the hyperparameters were
chosen based on the expert knowledge of the author and were
never reached during optimization.

The results of the hyperparameter optimization are
summarized in Table 2. Similar to the setup of the GPR, the
hyperparameters are optimized once for the component-
specific data set and once for the process-specific data set. For
both sets, the sigmoid activation function outperforms the
alternative activation functions. Both ANNs are optimized to
be small with only one hidden layer. However, the process-
specific ANN contains approximately twice the number of
neurons in the first layer with 308 neurons compared to the
147 neurons in the component-specific ANN. Since a high
number of neurons in the process-specific ANN tend to overfit,
the batch size is optimized to be 7 times higher, and the
learning rate is decreased to approximately half. However, the
regularization rate, which is usually increased for architectures
that tend to overfit, is approximately half the size of the
component-specific ANN. Overall, the optimized architecture
of the process-specific ANN implies a higher complexity of the
functional relationships between process descriptors and
targets compared to the component-specific ANN. This
observation is consistent with the results from the kernel
search for the GPR.

B PREDICTION ACCURACY AND FEATURE
IMPORTANCE

The prediction performance of the proposed framework is
compared in terms of the root-mean squared error and the
coefficient of determination (cf. the Supporting Information
for further information on the error measures). As a test set,
20% of the data set is split randomly using the KL divergence
approach described above. To ensure comparability of all
approaches, this test set is kept constant for all comparisons
regarding the prediction performance. In the following, this set
is referred to as the randomly generated LCA test set. An
overview of all considered chemicals and processes is given in
the Supporting Information.

Prediction Performance on the Randomly Generated
LCA Test Set. The prediction performance is discussed for
predictive LCA models on the randomly generated LCA test
set using process descriptors and the latent representation as

Table 2. Optimized Hyperparameters for the Artificial Neural Network Modeling the GWI, Once Based on Molecular
Descriptors Only (Component-Specific) and Once Using the Combination of Molecular and Process Descriptors (Process-

Specific)
data set activation function  no. hidden layers  no. neurons in hidden layer ~ regularization =~ epochs  batch size  learning rate
component-specific sigmoid 1 147 0.00471 440 2 0.01
process-specific sigmoid 1 308 0.00218 410 14 0.0052
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Figure S. Prediction accuracy of the predictive LCA models using molecular descriptors only (component-specific), molecular and process
descriptors (process-specific), only the latent representation (latent), and the combination of latent representation and process descriptors
(process-specific latent) as features. The prediction performance of all four combinations is given once for the ANN-based (blue bars) and once for
the GPR-based predictive LCA (green bars). Shaded bars indicate component-specific models, while filled bars refer to process-specific models.

features. In total, four combinations of features are considered
for the assessment: (1) using molecular descriptors only, (2)
using molecular and process descriptors, (3) using the latent
representation only, and (4) complementing the latent
representation with molecular and process features (Figure
5). The complementing features are chosen using the
sequential forward selection as a feature selection method,
whereby the latent representation was fixed as input, and the
remaining features were selected complementarily. The latent
size is kept constant on d = 20.

The component-specific ANN represents the state-of-the-art
from the literature and achieves an R* of 0.3 and an root mean
squared error (RMSE) of 2.36 kg CO,-equiv. In contrast, Song
et al.” reports a coefficient of determination factor 1.6 higher
(R?* = 0.48) for their component-specific ANN. However, Song
et al.” used leave-one-out cross-validation to determine the R?,
and thus, the results are not directly comparable. Furthermore,
the deviation in the prediction performances might result from
the different training sets used. Song et al’ trained on a
training set including only one production process per
component. In contrast, the training set used in this work
contains on average at least 2 process alternatives producing
the same compound. As a result, the component-specific
model presented in this work averages between process
alternatives’ impacts and thus, the prediction performance
decreases.

To estimate the influence of the different data sets on
prediction accuracy, we can approximate the target values as
predictions and determine the maximum possible R*. Using a
product-specific data set, i.e.,, one like Song et al.” used, the R?
would be 1. In contrast, for the process-specific data set,
assuming the mean values from all processes with the same
product as the prediction, the R? drops to 0.81. In other words,
our model can reach a maximum of 0.81, whereas the model
from Song et al.” can reach 1, since the training data, i.e., what
they later have to compare against, is already averaged.

When a process-specific ANN is trained using the process
features developed in this work, the prediction performance
increases by 46%, resulting in a coefficient of determination R*
= 0.44 (RMSE = 2.1 kg CO,-equiv). Similarly, the R* of the
GPR-based model increases significantly by 60%, from 0.33 to
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0.53, when extending the molecular descriptors with process
features. The RMSE is reduced by about 16% from 2.3 to 1.9
kg CO,-equiv.

Compared to the R* of 0.44 for the process-specific ANN-
based model, training the ANN solely with the latent
representation reduces the coeflicient of determination by a
factor of approximately 4.8 to R* = 0.1. The RMSE is increased
to 2.7kg CO,-equiv, which equals an increase of 28%.
Combining the latent representation with additional process
features as input for the ANN, the prediction performance
increases up to R* = 0.39 and an RMSE of 2.21 kg CO,-equiv
compared to the ANN solely trained with the latent
representation. Nevertheless, the ANN trained only with
molecular and process descriptors still achieves the highest
performance when comparing all ANN-based methods.

Similar to the ANN, the prediction performance of the GPR-
based model decreases when trained with the latent
representation only compared to the process-specific GPR.
However, the coeflicient of determination only decreases by a
factor of 3.4 from 0.53 to 0.16, and thus, the GPR-based model
outperforms the ANN-based model solely trained with the
latent representation. In contrast, the GPR-based model can
nearly quadruple its prediction performance in terms of R*
from 0.16 to 0.6, when comparing the training with latent
representation only and the combination of latent representa-
tion and additional process features. Thus, the GPR-based
predictive LCA model trained on the latent representation and
process features also outperforms the GPR trained with
molecular and process descriptors only (R* = 0.53). In terms of
RMSE, the prediction performance of the combined input of
latent representation and process features reduces the RMSE
by 0.36 kg CO,-equiv from 2.59 to 1.76 kg CO,-equiv, which
equals a reduction of 32%.

In conclusion, utilizing the process features as input always
increases the prediction performance. In contrast, utilizing the
latent representation as input does not necessarily improve the
prediction performance. Furthermore, the GPR-based frame-
works outperform the ANN-based frameworks in all
considered input combinations. The GPR-based predictive
LCA framework which is trained on the latent representation
and process features as input achieves the highest prediction
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Figure 6. Prediction accuracy of the predictive LCA models averaged over 30 data set splits according to Wernet et al.* using molecular descriptors
only (component-specific), molecular and process descriptors (process-specific), only the latent representation (latent), and the combination of
latent representation and process descriptors (process-specific latent) as feature. The prediction performance of all four combinations is given once
for the ANN-based (blue bars) and once for the GPR-based predictive LCA (green bars). Shaded bars indicate component-specific models, while

filled bars refer to process-specific models.

performance. The influences of single predictions on the
overall models’ prediction performance are discussed in further
detail in the Supporting Information.

Averaged Prediction Performance on 30 Randomly
Generated Test Sets. Wernet et al® evaluated their
prediction performances on average over 30 models with
varying training/test set splits. Thus, to compare the achieved
prediction performance of our models with the results of
Wernet et al,” an averaged prediction performance over 30
data sets is required. We therefore trained 30 predictive models
for each input configuration not only using the random
generated LCA test set with lowest KL divergence but 30 data
set splits with the 30 lowest KL divergences in the next step.
The achieved prediction performances are then averaged
(Figure 6). Generally, the trend in the averaged performances
is identical to the trends discussed on the randomly generated
test set comparing the various input combinations. However,
the differences in the prediction performance between the
ANN- and GPR-based models decrease when compared for
similar inputs.

Both component-specific models achieve an average
coefficient of determination of R*> = 0.35 and an RMSE of
2.15 kg CO,-equiv. In contrast, Wernet et al.® report an
increased R* of 0.41, which can be explained again by the
different training set including only one production process per
component.

When the process features are used as input, the prediction
performance increases by up to 40% and 11% in terms of the
coefficient of determination (R*> = 0.47—0.49) and the root
mean squared error (RMSE 1.9-1.93 kg CO,-equiv),
respectively, compared to the component-specific models.
However, on average, the GPR-based model deteriorates its
prediction performance compared to the randomly generated
LCA test set by 20 percentage points on the coefficient of
determination. In contrast, the ANN-based model improves its
prediction performance by 6 percentage points. As a result, the
prediction performance no longer substantially depends on the
choice of regression model. In contrast, the choice of the input
features gains relevance.
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The predictive LCA models trained solely on the latent
representation as input perform on average similarly poorly as
observed on the randomly generated LCA test set. The ANN-
based model achieves an R* = 0.13, while the GPR-based
model achieves a slightly increased R* = 0.18.

The highest prediction performance is achieved with the
predictive LCA models using process features and the latent
representation as input (R* = 0.53, RMSE= 1.82). Similar to
the process-specific models trained without the latent
representation, the choice of the regression model does not
influence the prediction performance.

In conclusion, the selection of the regression model is only
less relevant than the selected features. Utilizing the process
features as input increases the prediction performance
substantially. The prediction performance can be further
increased when the process features are extended by the latent
representation. Thus, in the following section, the influence of
the features on the prediction performance is discussed in
detail.

Influence of the Latent Size on the Prediction
Performance. In Figure 7, the coeflicient of determination
is plotted against the size of the latent representation, which is
then used as a feature for the predictive LCA model. As a
predictive LCA model, the GPR-based model is used, which is
identified as most promising for the randomly generated data
set (Figure S). Since the feature space of the LCA regression
model is limited to 35 features, the maximum latent size is set
to 30, allowing for including at least five additional features,
e.g., process descriptors. For each latent size and each feature
combination, the training data for the encoder—decoder neural
network is split ten times into a training set and a validation
set, allowing for the training of ten models for each
combination of features and latent sizes. To limit the
computational effort, each model is only trained for one
epoch. The test set is always kept constant, using the same
chemicals contained in the LCA database. Afterward, the
prediction performance on this test set is averaged over the ten
models for each combination.

Overall, the averaged coefficients of determination achieved
by the latent representation-using models are substantially

https://doi.org/10.1021/acssuschemeng.2c07682
ACS Sustainable Chem. Eng. 2023, 11, 9303-9319


https://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.2c07682/suppl_file/sc2c07682_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.2c07682?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.2c07682?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.2c07682?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.2c07682?fig=fig6&ref=pdf
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.2c07682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Sustainable Chemistry & Engineering

pubs.acs.org/journal/ascecg

Research Article

0.5

0.4

0.3

0.2

0.1

Coefficient of determination (R?)

10 15 20

Latent size

25 30

— latent representation incl. process features
—— latent representation incl. molecular features
latent representation

Figure 7. Trade-off between the latent size and the prediction
accuracy of the GWI using the GPR-based predictive LCA framework.

lower than the ones presented in Figure S due to the limited
training of one epoch only. The predictive LCA models trained
with the latent representation and additional molecular
features (green line) and with the latent representation and
additional molecular and process features (petrol blue line)
clearly show a maximum at a latent size of d = 20 and an R* of
0.35 and 0.49, respectively. Therefore, the assumption of fixing
the latent size to d = 20 can be confirmed.

Influence of the Selected Features on the Prediction
Performance. As demonstrated in the previous section, the
chosen features influence the prediction performance sub-
stantially. Thus, the importance of each feature is analyzed
according to Breiman:*® For one feature at a time, the value is
randomly shuffled from a uniform distribution over the entire
value range, while all other features are held constant. The
feature importance is then measured by the introduced
degradation of the predictive accuracy on the targets
normalized on 100%.

The feature importance analysis is conducted for the
process-specific latent GPR (Figure 8), which uses 34 features

in total as input. 20 of these 34 features refer to the latent
representation, while the remaining 14 features are composed
of 10 additional molecular and 4 process features (cf. Table
S15). The stoichiometric sum of the reactants’ impact
Eloichiometric 1S the most important feature with an importance
of 18%. However, this feature is also the only process feature
achieving a high importance for the prediction. Further utilized
process features such as the estimated heat demand or the
approximated environmental impact EI} . ¢cs achieve impor-
tance scores lower than 3%. Entries of the latent representation
are ranked 2—6, and at rank 8 with a feature importance of 4—
17% thereby explaining the increased prediction performance
of the process-specific latent predictive LCA frameworks
compared to solely process-specific frameworks. 24 features
achieve an importance less than 3% and are thus of only low
importance.

In particular, the high importance of the seventh dimension
of the latent representation is remarkable. Although a direct
physical interpretation is not possible, an apparent correlation
exists between the values of this dimension and the structure of
the main product: all chemicals with low values in dimension 7
contain a benzene ring, while high values describe aliphatic
compounds, mostly acids or acetates. As a result, the
aromaticity of the main product seems to influence the GWI
of the production process. Nevertheless, this influence is not
apparent since dimension 7 of the latent representation is only
poorly linearly correlated with the target GWI, with a
negligible correlation coefficient of p* = 0.01. The nonlinear
machine learning model is still able to identify this relation.

The scoring of the process features El ipiometric Elheuristicss
and the estimated heat demand can be explained by a closer
look at the contributions to the target process impact. The
GWI of a process is composed of the feedstock- and the
energy-related emissions, as well as emissions caused by
auxiliaries and direct process emissions. The stoichiometric
sum of the reactants’ impact EI is intended to provide
information on the feedstock-related emissions as a feature.
Comparing El;hiomewic With the feedstock-related contribu-
tions to the target GWIs (Figure 9) reveals a strong correlation
(p* = 0.75) and thus, a high informative value of the feature.

stoichiometric

EIstoichiometric

Latent representation Dim 7
Latent representation Dim 18
Latent representation Dim 1
Latent representation Dim 11
Latent representation Dim 15
TLLE,0

Latent representation Dim 6
Pcrit

o moment 2

others < 3%

10
Relevance (%)

15 20 25

Figure 8. Feature relevance for the life cycle assessment prediction using the latent representation as feature. In total, 34 features are used as input,

of which 24 each achieved a relevance of less than 3%.
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Figure 9. Parity plot of the stoichiometric sum of the reactants’
impacts against the feedstock-related impacts of the targets. In
general, the stoichiometric sum of the reactants’ impacts represents a
lower bound for the impact of a process. However, suppose a process
produces a valuable byproduct that is not included in the
stoichiometric equation but is produced by a second, parallel side
reaction. In that scenario, the stoichiometric impact can also take on a
higher value than the actual process impact due to allocation.

Similarly, the estimated heat demand is intended to describe
the energy-related emissions. However, the resulting impact
based on the estimated heat demand correlates poorly (R*
0.03) with the energy-related contributions to the target GWIs
(Figure S8, orange points), and thus, this feature contains only
low informative value for the predictive LCA model. The low
correlation is caused by a strong underestimation of the
process energies. A detailed discussion of the accuracy of the
process models is given in the Supporting Information.

Since the feature Elj . ;qics cOrresponds to the sum of the
estimated feedstock and energy-related impacts, this feature
combines the information content of Elg ;piomeric and the
estimated energy demand. In addition, however, this feature
further contains the information of the selected energy
scenario, since the specific impact per MJ heat is also passed
on to the predictive LCA model. Nevertheless, the feature
El}urisics achieves only a low importance of 0.7% since it is
strongly correlated to the El;hiometric and the heat demand. As
a result, the predictive LCA model still has access to the
required input information by the correlated features although
the Eljcurisics 1S varied. The low feature importance is thus not
reliably interpretable.

To gain further insights into the importance of the latent
representation and its influence on the prediction performance,
the feature importance analysis of the process-specific latent
GPR can be compared to the analysis conducted for the
process-specific GPR trained without latent representation
(Figure 10). The latter model uses 18 features as input from
which 7 features are process features and the remaining 11 are
molecular features (cf. Table S15). Similar to the process-
specific latent GPR, the stoichiometric sum of the reactants’
impacts achieves the highest importance. However, the
importance increases substantially, up to 33%, while the
molecular features’ importance decreases compared to the
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Figure 10. Feature relevance for the life cycle assessment prediction
without the latent representation. In total, 18 features are used as
input, of which 8 each achieved a relevance of less than 3%.

latent representation dimensions. Thus, the molecular features
contain less informative value compared to the latent
representation.

This observation can be explained exemplarily by the second
most important feature, the number of oxygen double bonds.
The number of oxygen double bonds contributes 12% to the
prediction of the process-specific GPR without latent
representation. Thus, the importance is 5% percentage points
lower than the seventh dimension of the latent representation,
the second most important feature of the process-specific
latent GPR. Both features contain the information regarding
whether the molecule considered is an acid or acetaldehyde.
However, the seventh dimension of the latent representation
contains additional information about the aromaticity of the
molecule and has thus overall an increased informative value.

In summary, the feature importance analysis indicates that
the process-specific predictive LCA models use the stoichio-
metric sum of the impacts of the reactants El;cpiometic S the
basis for the prediction. A component-specific offset is then
added based on the molecular features to approximate the
energy-related impact.

B PROCESS DESCRIPTORS AS KEY FEATURE

To further investigate the benefits of process descriptors, a
second data set split is performed including at least two process
alternatives for each chemical in the test set. Therefore, 40
samples (13% of the overall LCA data samples) are chosen
manually as a second test set. This test set is referred to as the
manually selected LCA test set in the following section.
Process Descriptors Allow Us to Distinguish between
Process Alternatives. The process-specific latent GPR
model is used to predict the GWIs of producing each chemical
via two alternative process routes. In Figure 11, the difference
between these two process alternatives” predictions is given. If
the trend between the process impacts is represented correctly
by the predicted impacts, then the differences for both the
targets and the predictions have the same sign, and the data
points end up in the first or third quadrant. To simplify the
diagram, the difference between two process alternatives is
always defined such that the representation ends in the first or
second quadrant, ie, A = j — j, with y; > y,, where j and y
describe the prediction and the target impacts, respectively.
Overall, the process-specific latent GPR can correctly
capture the trend in 18 out of 21 process comparisons
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Figure 11. Parity plot of the GWI differences between process
alternatives yielding the same product. The difference jj — j), refers to

the difference of the predicted impacts, while the difference y, — y,
describes the difference of the targets. For all comparisons between
two process alternatives whose points belong to the first quadrant
(green area), the trend can be predicted correctly (18 out of 21
comparisons).

(86%). For the 3 process comparisons for which the trend
cannot be predicted correctly, the predicted differences are
close to or below 0. The predictive LCA model cannot
distinguish these processes with sufficient accuracy because the
stoichiometric impacts of the process alternatives differ by only
0.3—0.6 CO,-equiv. However, the stoichiometric sum of the
impacts of the reactants is the most important process feature,

to which the predictive LCA model basically adds a
component-specific offset. Therefore, the prediction leads to
similar GWIs for both process alternatives. In contrast, the
target GWIs of the respective process alternatives differ
substantially, as the processes have significantly different
energy demands. However, these energy demands cannot yet
be adequately described with the features used, which leads to
poor predictions for energy-intensive processes.

Nevertheless, the majority of the process alternatives is
successfully distinguished using the proposed features. There-
fore, the predictive LCA framework allows for the screening of
process alternatives in early stages of process development.

Process Descriptors Allow Description of the Back-
ground System. An advantage of process descriptors is that,
in addition to information about the process itself, changes in
the background system can also be considered. As an example,
the GWI for CO,-based methanol is considered in Figure 12
for today and future scenarios. The GWI is compared to the
incumbent methanol production from fossil-based natural gas.
We chose methanol as an example because we had complete
LCAs for different background systems for this case study.

In the today scenario, carbon dioxide is considered as a
byproduct of the ammonia production. Hence, a part of the
process emissions is attributed to this CO, following the
modeling in the internal database provided by the Gabi
software.”® The hydrogen is provided by steam methane
reforming. The electricity is supplied by the current EU grid
mix 2020. In the future scenario, electricity is supplied by wind
power, and as a result, hydrogen with a lower GWI is obtained
by electrolysis. The CO, is captured from a power plant,
obtaining a credit for the avoided emission.

Currently, methanol is produced via fossil-based means by
the oxygenation of natural gas. The resulting GWI accounts for
0.38kg CO,-equiv. The CO,-based production of 1kg
methanol, as proposed by Rihko-Struckmann et al,*” requires
1.38kg of CO, and 0.197kg of hydrogen as input.
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Figure 12. CO,-based methanol as an example for process specific prediction of the GWI using a state-of-the-art component-specific artificial
neural network (ANN, light blue) and a process-specific latent Gaussian Process Regression (GPR, green). The error bars indicate the prediction’s

standard deviation obtained from the GPR.
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Furthermore, the energy demand accounts for 4.82 MJ
electricity. Overall, the production of 1kg CO,-based
methanol results in 3.41 kg CO,-equiv in the today scenario
and decreases substantially to —1.02kg CO,-equiv in the
future scenario (Figure 12). The negative value is due to the
scope from cradle-to-gate and the credit for avoided emissions.

Since the molecular descriptors could not represent the
changing background system, the predicted impacts of the
component-specific ANN predict an impact of 1.97 kg CO,-
equiv, which equals the average impact for methanol in the
training set. In contrast, the process-specific latent GPR uses
the stoichiometric sum of the reactants’ impacts as well as the
estimated energy demand of the process as a feature and thus
obtains information about the scenario under consideration,
e.g., the changing GWI of the hydrogen and CO, supply. As a
result, the predicted impacts reflect the trends in the GWI
correctly: Changing the today scenario from a fossil-based
method to a CO,-based production of methanol is predicted to
increase the impact by 3.2 kg CO,-equiv (from 1.2 to 4.3 kg
CO,-equiv), which is in close agreement with the 3 kg CO,-
equiv difference between the target impacts. Furthermore, the
substantial decrease in the GWI for CO,-based methanol when
changing the background scenario is predicted correctly as a
reduction potential of approximately 4 kg CO,-equiv (from
4.33 to 0.3 kg CO,-equiv).

The presented predictive LCA framework further offers the
advantage that the prediction’s uncertainty can be quantified.
The prediction’s standard deviation ranges from 1.77 to 1.87
kg CO,-equiv for the fossil-based and CO,-based production
methods of methanol, respectively. Considering the error bars
reveals that the predictive LCA framework meets the target
impacts within one standard deviation. Furthermore, the trend
between the CO,-based production processes can be reflected
correctly for varying background scenarios despite the high
uncertainty. As a result, the presented predictive LCA
framework can serve as decision-supporting tool at TRL 2.

Bl DISCUSSION AND OUTLOOK

A fully automatized predictive LCA framework for the cradle-
to-grave environmental impacts is presented that is based on
newly developed features, i.e., latent representation of the main
product and process features. The GWI is studied as an
exemplary impact category. However, the proposed framework
can be applied accordingly to any other impact category.

The highest prediction performance is achieved using a
combination of latent representation and process features as
input for the GPR-based framework. However, the advantage
of the GPR over the ANN is canceled out when the prediction
performance is averaged over 30 randomly generated test sets.
Instead, the choice of features affects the prediction perform-
ance substantially. In conclusion, the model choice is less
important compared to the choice of suitable features.

A feature importance analysis identifies the stoichiometric
sum of the reactants’ impact as the most important process
feature, which can be explained with the high correlation
between this feature and the feedstock-related contributions to
the overall impact. The predictive LCA model then adds a
component-specific offset based on molecular features. This
offset is most closely correlated with the seventh dimension of
the latent representation, encoding the aromaticity of the
component.

Other process features such as the estimated energy demand
contribute only marginally to the prediction, although the
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impacts of most considered chemical processes are mainly
caused by their energy demand. Therefore, process energy
should be an important feature. In this work, the used pinch-
based process models provide minimum energy demands and
thus largely underestimate the process energies resulting in a
low correlation with the target GWI. Subsequent work should
improve process models to estimate the energy demands more
accurately, e.g., by using more rigorous models for reaction and
separation including recycling, side reactions, waste treatment,
and potentially heat integration. Furthermore, process
modeling also needs to consider solids as well as inorganic
chemicals.

Side reactions leading to valuable byproducts and process
waste also affect the LCA impacts of the main product. In this
work, economic allocation is used to solve multifunctionality.
However, the effect of allocation methods on the predicted
impact needs further investigation. Subsequent work could
even consider allocation as a user input.

Our results further show that the developed process features
allow for distinguishing between process alternatives and
considering changing background systems. In the comparison
of process alternatives, where two each lead to the same
product, the trend of the impacts could be correctly identified
in 86% of the cases. Similarly, the trend for CO,-based
methanol was predicted correctly assuming varying CO, and
H, sources. Therefore, the presented predictive LCA frame-
work can serve as decision-supporting tool at TRL 2. Notably,
with increasing TRL, process design might change significantly
from the assumed generic flowsheet. The generic process
descriptors employed can also not be expected to catch the
effect of highly innovative solutions (e.g., process intensifica-
tion). A more detailed LCA has to refine the estimated impact
and reduce uncertainty as process development progresses.
One advantage of the presented framework is that these
uncertainties can be quantified. Nevertheless, the uncertainties
of the predicted impacts are still high. More and better data is
urgently needed to improve the prediction of LCA results.

In conclusion, the presented predictive LCA framework can
now be used as a decision-supporting tool in early process
development. The developed framework is open for future
performance improvements by integrating more expressive
process features and increasing the training data set size.

B ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
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Processes included in the consistent LCA training data
set, details on the encoder—decoder neural networks,
architecture of the encoder—decoder neural networks,
automated flowsheeting according to the Douglas
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