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A B S T R A C T

Decarbonizing complex industrial energy systems is an important step to mitigate climate change. Designing
the transition of such sector-coupled industrial energy systems to low-carbon designs is challenging since
both cost-efficient operation and the reduction of environmental impacts over the whole life cycle need to
be considered in the system design. Optimal system designs can be identified using software: Recently, the
open-source framework SecMOD was introduced for the linear optimization of multi-energy system models,
considering environmental impacts by fully integrating life-cycle assessment. In this work, we extend SecMOD
to allow mixed-integer decisions that are vital to model industrial energy systems. Thereby, we provide the
first open-source mixed-integer linear program framework with full integration of life-cycle assessment. We use
SecMOD to investigate the benefits of a pumped-thermal energy storage system in a sector-coupled industrial
energy system and identify trade-offs regarding the system design by comparing the economic and climate
optimum.
1. Introduction

Climate change and the resulting political developments require
industrial energy systems with low-carbon energy converters to reduce
the carbon footprint and decrease dependency on fossil resources, such
as natural gas. Hence, new energy system designs now increasingly
aim to integrate low-carbon energy from renewable sources to reduce
greenhouse gas emissions (Ringkjøb et al., 2018). While renewable
energy is increasingly deployed in the electricity sector worldwide, its
contribution to supply heat, e.g., by biomass, has stagnated (Interna-
tional Energy Agency, 2021). Sector-coupling may help to bridge this
gap and lead to synergy effects between sectors, e.g., by power-to-heat
processes using heat pumps (Guelpa et al., 2019).

In order to develop environmentally beneficial systems, new energy
system designs need to ensure that environmental burdens are not
shifted to other parts of the life cycle or to other environmental impacts.

The need to consider environmental aspects beyond climate change,
volatile electricity supply of renewables, and sectoral interaction leads
to highly complex and interconnected systems. Identifying the opti-
mal energy system design is a challenge that can be best addressed
by mathematical optimization (Andiappan, 2017). As mathematical
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optimization is a powerful but elaborate tool, in recent years, sev-
eral frameworks for the optimization of energy systems have been
published with a focus on reduced modeling effort and enhanced
reusability (Ringkjøb et al., 2018; Lopion et al., 2018). A framework is a
flexible software toolbox that can comprise data processing, generalized
equations, and optimization procedures. Hence, the framework builds
specific models that can be flexibly developed and optimized (Hilpert
et al., 2018).

However, such frameworks usually focus, in particular, on energy
systems at a large-scale and, thus, model the energy system with re-
duced mathematical complexity, usually as a linear program (LP), e.g.,
Sánchez Diéguez et al. (2022), EnergyScope TD (Limpens et al., 2019)
or PyPSA (Brown et al., 2018). To facilitate the transition towards
low-carbon energy supply, tools are necessary for optimizing industrial
energy systems, which typically require the tool to account for mixed-
integer decisions to model discrete components, including part-load
behavior (Kantor et al., 2020). Software from commercial providers,
such as Top-Energy (TOP-Energy, 2022) and the Siemens prototype tool
mm.esd (Hoettecke et al., 2022), allows the modeling and optimization
of the energy system to a high level of detail. However, such tools
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Table 1
Overview of the features of the SecMOD MILP and SecMOD LP framework (Reinert et al., 2022b) compared to common energy system optimization models and frameworks. Some
frameworks are presented in several publications with different model features. The listing in this table refers to the specific features in the publications cited here.

Features SecMOD
MILP

SecMOD
LP

Hilpert et al.
(2018)

Sánchez Diéguez
et al. (2022)

Limpens
et al. (2019)

Brown et al.
(2018)

TOP-Energy
(2022)

Hoettecke
et al. (2022)

Fleschutz
et al. (2022)

Langiu et al.
(2021)

Continuous sizing of
discrete components

✓ ✓ ✓ ✓ ✓ ✓

Detailed modeling of
component operation

✓ ✓ (✓) ✓ ✓ ✓ ✓

Life-cycle assessment ✓ ✓

Multi-objective
optimization

✓ ✓ ✓ ✓ ✓

Multi-graph networks
(spatial resolution)

✓ ✓ ✓ ✓ ✓ ✓

Transition pathways
incl. brownfield
optimization

✓ ✓ ✓ ✓ ✓ (✓) (✓)

Open-source available ✓ ✓ ✓ ✓ ✓ ✓ ✓
require commercial licenses thereby limiting accessibility and are usu-
ally not available in open source.

Pfenninger et al. (2018) highlight that reusability is limited when
models are not openly available. Generalized and modular open-source
software frameworks ensure reusability and, thus, contribute to accel-
erating transparent research. Recently, open-source frameworks have
been developed for optimizing industrial energy systems with mixed-
integer decisions. For example, the open-source Demand Response
Analysis Framework (DRAF) (Fleschutz et al., 2022) optimizes the
design and operation of industrial energy systems considering both
costs and time-dependent greenhouse gas emissions in a multi-criteria
optimization. The component-oriented modeling approach of the open-
source framework COMANDO (Langiu et al., 2021) enables the con-
sideration of non-linearities and parametric uncertainties. While both
frameworks are open-source and are applicable to energy systems at an
industrial scale, they do not allow for a holistic life-cycle assessment.
While the available tools thus provide valuable insights for energy sys-
tem planners, current frameworks lack a holistic approach to account
for the environmental impacts over the whole life cycle within the
energy system’s design and operation (Cook et al., 2022).

Such a holistic approach to embody environmental impacts is
needed: As the switch to renewable energy supply leads to a shift
from direct emissions to infrastructure-related emissions (Reinert et al.,
2021), decision-making should take into account environmental im-
pacts over the whole life cycle. Hugo and Pistikopoulos (2005) and Ger-
ber et al. (2013) therefore integrated MILP optimization and life-cycle
assessment, demonstrating the importance of this holistic perspective.
However, a flexibly adaptable and openly available framework is still
missing for the integration of energy system optimization and life-cycle
assessment.

For this purpose, the object-oriented framework SecMOD was re-
cently published and considers energy conversion, transport, and stor-
age (Reinert et al., 2022b). The SecMOD framework considers life-cycle
assessment (as standardized in ISO, 2020a and ISO, 2020b) for a
holistic assessment of the energy system. However, currently, SecMOD
is limited to linear program (LP) optimization.

1.1. Contribution of this work

In this work, we extend SecMOD from LP to MILP, modifying
SecMOD to account for integer decisions necessary to consider energy
systems at an industrial scale. Thereby, our newly developed MILP
version of SecMOD is used to model an industrial energy system with
continuous sizing of discrete components: For the discrete production
components, the MILP formulation introduces integer decisions to (1)
model minimum part-load and (2) approximate the nonlinear part-
2

load behavior as a piecewise-affine function, and (3) model operation
for the discrete storage components. We extend our conference pub-
lication (Reinert et al., 2022a) by elaborating on the MILP extension
in more detail and by providing SecMOD MILP as an open-source
framework (Section 2).

We demonstrate the capabilities of the SecMOD MILP framework
by analyzing pumped-thermal energy storage (PTES) in a low-carbon
industrial energy system (Section 3). PTES systems can strengthen
sector-coupling by addressing volatility in electricity supply to provide
electricity and heat flexibly (Dumont et al., 2020): During high feed-in
of renewable electricity, PTES systems convert electricity into heat and
store the heat that cannot be immediately used. Later, the stored heat
can either fulfill a heat demand or be re-converted to electricity. If the
used electricity is from renewable sources, PTES systems can contribute
to a secure and low-carbon energy supply. Finally, we provide the
conclusions (Section 4).

2. Method: Combining MILP optimization and life-cycle assess-
ment

We extend the linear program (LP) formulation of the SecMOD
framework (Reinert et al., 2022b) to a mixed-integer linear program
(MILP) formulation. Table 1 gives an overview of the features to show
the capabilities of both formulations compared to common energy
system optimization models and frameworks. The MILP formulation
allows for the optimization of industrial energy systems based on a user-
defined superstructure (Voll et al., 2013). Within the superstructure-
based optimization, the MILP formulation can consider continuous
sizing of discrete production and storage components and integer de-
cisions during operation, e.g., to model part-load behavior (Kämper
et al., 2021b). Thus, the optimization decides on the installation of
components, their optimal size, and how the selected components are
operated to supply the user-defined demands.

While integer variables are required to model the minimum part
load, the part-load behavior could also be modeled nonlinearly. How-
ever, the resulting MINLPs are difficult to solve for global optimal-
ity (Mitsos et al., 2018). Recent publications highlight that piecewise-
affine approximations yield sufficient results and computation times
while guaranteeing global optima with commercially available solvers
(Kotzur et al., 2021; Kämper et al., 2021a).

By integrating a life-cycle assessment, different objective functions
can be considered in a single or multi-objective optimization. Hence,
the framework can find both cost-optimal and environmentally optimal
solutions to explore trade-offs. Both LP SecMOD and MILP SecMOD
offer features, such as multi-graph networks to account for spatial
resolution, transition pathways, and brownfield optimization. Fig. 1

shows the optimization workflow within the SecMOD MILP framework.



Computers and Chemical Engineering 172 (2023) 108176C. Reinert et al.
Fig. 1. Workflow for using the SecMOD MILP framework, extending the workflow of SecMOD LP (Reinert et al., 2022b): In the first step, the user defines a system, including the
superstructure. In the second step, the components within the superstructure are defined. Subsequently, the optimization is performed. Last, the obtained results can be analyzed

in a graphical user interface.
Thereby, the SecMOD MILP formulation provides an open-source
framework that is able to optimize the design and operation of indus-
trial energy systems. The framework, including the entire equations and
all features, is published open-source at https://git-ce.rwth-aachen.de/
ltt/secmod-milp. The modular structure allows the flexible considera-
tion of the features mentioned above, depending on the user settings. In
the following subsections, we present the extensions compared to the
LP SecMOD formulation by Reinert et al. (2022b). For a description
of the remaining feature set, we refer to the paper of Reinert et al.
(2022b) and the open-source git-repository.

Section 2.1 explains the decision setting for industrial energy sys-
tems by introducing the problem statement. Subsequently, we present
the flexible objection function and limits on expenditures in Sec-
tion 2.1.1 that allow us to set up a multi-criteria optimization. Sec-
tion 2.1.2 presents the product balance for the multi-energy system.
Afterward, we present the extensions of the SecMOD MILP formulation
compared to Reinert et al. (2022b). Sections 2.2 and 2.3 show the
constraints that model discrete production components and storage
components, emphasizing the need for binary variables.

2.1. Problem statement

The SecMOD MILP formulation optimizes the design and operation
of an industrial energy system (cf. Fig. 1). The industrial energy system
supplies pre-defined demands of products 𝑏 ∈ 𝐵 (e.g., electricity, heat,
etc.) in time steps 𝑡 ∈ 𝑇 . In the framework, the user defines a super-
structure consisting of production components 𝑐 ∈ 𝐶prod and storage
components 𝑐 ∈ 𝐶stor. The superstructure represents all possibilities for
the design of the industrial energy system.

Given the user-defined superstructure, the optimization aims to find
the optimal design and operation of the industrial energy system for
the objective function specified by the impact 𝑖𝑚𝑝 ∈ 𝐼𝑀𝑃 . Here, the
impacts can be either cost or environmental impacts. The optimization
determines the design, including the continuous sizing of discrete pro-
duction and storage components. For this purpose, we introduce the
binary variables 𝑍prod,part

𝑐,𝑠,𝑡 for production components and 𝑍stor,exist
𝑐 for

storage components. The optimized system consists of production com-
ponents with capacity 𝑃 prod,nom

𝑐 and storage components with capacity
𝑃 stor,nom. Depending on the desired optimization, SecMOD requires
3

𝑐

initial values for none of the capacities (Greenfield optimization), some
of the capacities (Brownfield optimization), and all of the capacities
(Operational optimization).

In each time step 𝑡 ∈ 𝑇 , the product demand is covered by the
energy flows 𝑃 prod,load

𝑐,𝑠,𝑡 from the production components, and the energy
flows from charging 𝑃 stor,load,in

𝑏,𝑐,𝑡 or discharging 𝑃 stor,load,out
𝑏,𝑐,𝑡 the storage

components. Therein, the binary variables 𝑍stor,in
𝑐,𝑡 and 𝑍stor,out

𝑐,𝑡 restrict
the storage operation per time step to allow either charging or discharg-
ing the storage component. Additionally, products can be purchased
𝑃 buy
𝑏,𝑡 (e.g. natural gas) or sold 𝑃 sell

𝑏,𝑡 (e.g. electricity) externally in each
time step 𝑡 ∈ 𝑇 . If desired, the user can forbid the purchase and sale of
specific products, e.g., to model stand-alone systems.

2.1.1. Objective function and expenditure limits
We formulate the SecMOD MILP as a multi-criteria optimization

with a flexible objective function. The consideration of different im-
pacts 𝑖𝑚𝑝 ∈ 𝐼𝑀𝑃 in the objective function allows the exploration
of optimal solutions in a single or multi-objective optimization. In
addition, Pareto curves can be obtained with the epsilon-constrained
method by adjusting the expenditure limits in Eqs. (2)–(4).

The objective function minimizes the total annual expenditures for
a user-defined impact 𝑖𝑚𝑝 as

min
∑

𝑐∈𝐶prod

kinv,prod
𝑐,𝑖𝑚𝑝

pvf𝑐
⋅ 𝑃 prod,nom

𝑐 +
∑

𝑐∈𝐶stor

kinv,stor
𝑐,𝑖𝑚𝑝

pvf𝑐
⋅ 𝑃 stor,nom

𝑐

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝐴𝑃𝐸𝑋𝑖𝑚𝑝

+
∑

𝑐∈𝐶prod

∑

𝑡∈𝑇

∑

𝑠∈𝑆
kop,prod
𝑐,𝑖𝑚𝑝 ⋅ 𝑃 prod,load

𝑐,𝑠,𝑡 ⋅ 𝛥t𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂𝑃𝐸𝑋prod

𝑖𝑚𝑝

+
∑

𝑏∈𝐵

∑

𝑐∈𝐶stor

∑

𝑡∈𝑇
kop,stor
𝑐,𝑖𝑚𝑝 ⋅ (𝑃 stor,load,in

𝑏,𝑐,𝑡 + 𝑃 stor,load,out
𝑏,𝑐,𝑡 ) ⋅ 𝛥t𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑂𝑃𝐸𝑋stor

𝑖𝑚𝑝

+
∑

𝑏∈𝐵

∑

𝑡∈𝑇
kbuy
𝑏,𝑡,𝑖𝑚𝑝 ⋅ 𝑃

buy
𝑏,𝑡 ⋅ 𝛥t𝑡 −

∑

𝑏∈𝐵

∑

𝑡∈𝑇
ksell
𝑏,𝑡,𝑖𝑚𝑝 ⋅ 𝑃

sell
𝑏,𝑡 ⋅ 𝛥t𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
exchange

.

(1)
𝑂𝑃𝐸𝑋𝑖𝑚𝑝

https://git-ce.rwth-aachen.de/ltt/secmod-milp
https://git-ce.rwth-aachen.de/ltt/secmod-milp
https://git-ce.rwth-aachen.de/ltt/secmod-milp
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The total expenditures comprise annualized capital expenditures
𝐶𝐴𝑃𝐸𝑋𝑖𝑚𝑝 and operational expenditures for production components
𝑂𝑃𝐸𝑋prod

𝑖𝑚𝑝 , storage components 𝑂𝑃𝐸𝑋stor
𝑖𝑚𝑝 , and the purchase and sale

of products 𝑂𝑃𝐸𝑋exchange
𝑖𝑚𝑝 . Depending on the user-selected impact 𝑖𝑚𝑝,

the expenditures can either consider cost or environmental impacts. For
this purpose, the components in the superstructure require economic
information (e.g., investment costs, maintenance costs), technical infor-
mation (e.g., lifetime, load-dependent efficiencies), and environmental
information. The environmental assessment requires a Life Cycle Inven-
tory (LCI) for each component that can, e.g., be modeled in SecMOD
via a combination of aggregated processes from ecoinvent. For a de-
tailed list of the required inputs, including examples, we refer to the
publication by Reinert et al. (2022b).

The capital expenditures 𝐶𝐴𝑃𝐸𝑋 arise from the installation of
iscrete production components 𝑐 ∈ 𝐶prod sized with the nominal

capacity 𝑃 prod,nom
𝑐 and discrete storage components 𝑐 ∈ 𝐶stor sized

with the nominal capacity 𝑃 stor,nom
𝑐 . The specific investment costs for

production components kinv,prod
𝑐,𝑖𝑚𝑝 and storage components kinv,stor

𝑐,𝑖𝑚𝑝 are
annualized with the component-specific present value annuity factor
pvf𝑐 according to Broverman (2017), based on a user-defined interest
rate. For capital expenditures, the specific annualized investment costs
are multiplied by the respective nominal capacities.

The operational expenditures 𝑂𝑃𝐸𝑋 arise from the operation of the
production and storage components as well as from the purchase and
sale of products 𝑏 ∈ 𝐵 in each time step 𝑡 ∈ 𝑇 . In each time step 𝑡 ∈ 𝑇 ,
the operational expenditures consist of the specific operating costs of
the production kop,prod

𝑐,𝑖𝑚𝑝 and storage components kop,stor
𝑐,𝑖𝑚𝑝 , multiplied by

the load of the production components 𝑃 prod,load
𝑐,𝑠,𝑡 and storage compo-

nents 𝑃 stor,load,in
𝑏,𝑐,𝑡 and 𝑃 stor,load,out

𝑏,𝑐,𝑡 . Storage components, therefore, can
incur operating costs both during charging and discharging. For each
product 𝑏 ∈ 𝐵 and in each time step 𝑡 ∈ 𝑇 , the industrial energy
ystem can purchase the product quantity 𝑃 buy

𝑏,𝑡 at specific cost kbuy
𝑏,𝑡,𝑖𝑚𝑝.

n addition, the industrial energy system can sell the product quantity
sell
𝑏,𝑡 at specific cost ksell

𝑏,𝑡,𝑖𝑚𝑝. The sale of products results in a credit in
he objective function. Ultimately, the operational expenditures of each
ime step 𝑡 are multiplied by the time step duration 𝛥t𝑡. The time step
uration 𝛥t𝑡 indicates the length of the respective time step in hours.

Optionally, in SecMOD MILP, the user can restrict impacts 𝑖𝑚𝑝
esulting from the construction and the operation of the industrial
nergy system by

𝐴𝑃𝐸𝑋𝑖𝑚𝑝 ≤ capexlim
𝑖𝑚𝑝, (2)

𝑃𝐸𝑋prod
𝑖𝑚𝑝 + 𝑂𝑃𝐸𝑋stor

𝑖𝑚𝑝 + 𝑂𝑃𝐸𝑋exchange
𝑖𝑚𝑝 ≤ opexlim

𝑖𝑚𝑝, (3)

𝐴𝑃𝐸𝑋𝑖𝑚𝑝 + 𝑂𝑃𝐸𝑋prod
𝑖𝑚𝑝 + 𝑂𝑃𝐸𝑋stor

𝑖𝑚𝑝 + 𝑂𝑃𝐸𝑋exchange
𝑖𝑚𝑝 ≤ totexlim

𝑖𝑚𝑝. (4)

For each impact 𝑖𝑚𝑝 ∈ 𝐼𝑀𝑃 , Eq. (2) limits the capital expenditures
o capexlim

𝑖𝑚𝑝, Eq. (3) limits the operational expenditures to opexlim
𝑖𝑚𝑝, and

q. (4) limits the total expenditures to totexlim
𝑖𝑚𝑝.

It is possible to change the environmental impacts that are con-
idered in the objective function and in the constraints. Furthermore,
he user can change the environmental impacts associated with con-
tructing or operating a component. In our work, we implemented
coinvent to assess environmental impacts, as ecoinvent is the most
ommonly used database. In principle, any database can be integrated
nto SecMOD to assess the environmental impacts. However, minor
odifications might be necessary. For the life cycle impact assessment,

arious impact assessment methods can be chosen.

.1.2. Product balance
In the SecMOD MILP extension, the user can determine the purchase

e.g., gas) and sale (e.g., electricity) of products on an individual basis
cross the defined system boundary. If desired, the product demand
or certain products can only be covered on-site (e.g., for heat), as the
urchase and sale of specific products can be prohibited. Additionally,
4

he user may allow on-site overproduction for some products. h
The industrial energy system covers an exogenous product demand
𝑏,𝑡 for each product 𝑏 ∈ 𝐵 in each time step 𝑡 ∈ 𝑇 with
∑

∈𝐶prod
𝑃 prod
𝑏,𝑐,𝑡 +

∑

𝑐∈𝐶stor
(𝑃 stor,load,out

𝑏,𝑐,𝑡 − 𝑃 stor,load,in
𝑏,𝑐,𝑡 ) + 𝑃 buy

𝑏,𝑡

= d𝑏,𝑡 + 𝑃 sell
𝑏,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 .

(5)

The exogenous demand d𝑏,𝑡 can be covered by the operation of
roduction and storage components. Here, the production 𝑃 prod

𝑏,𝑐,𝑡 of
roduction component 𝑐 ∈ 𝐶prod in time step 𝑡 is positive if the
roduct 𝑏 is produced or negative if a product 𝑏 is consumed. Storage
omponents 𝑐 ∈ 𝐶stor can shift the product demand for product 𝑏
n time by charging 𝑃 stor,load,in

𝑏,𝑐,𝑡 or discharging 𝑃 stor,load,out
𝑏,𝑐,𝑡 the storage

omponents in time step 𝑡. In addition, the sale 𝑃 sell
𝑏,𝑡 and purchase 𝑃 buy

𝑏,𝑡
f products increases or decreases the exogenous demand.

.2. Production components

Production components 𝑐 ∈ 𝐶prod convert one or several input
roducts 𝑏 ∈ 𝐵 into one or several output products 𝑏′ ∈ 𝐵. In the
ecMOD MILP extension, we consider the installation of discrete pro-
uction components. In case the production component is installed, the
omponent can be sized within a predefined sizing range. To account
or economies of scale, the user can define different sizing ranges for the
espective production components in the superstructure with varying
pecific investment costs.

The operation of the installed production components considers
art-load behavior, comprising minimal part load and load-dependent
fficiencies for converting the inputs into the outputs. The conversion
fficiency is approximated as a piecewise-affine linear function to avoid
onlinearities. Thus, part-load behavior is modeled as piecewise-affine
inearization with 𝑠 ∈ 𝑆 part-load segments that are scaled with the
nstalled capacity 𝑃 prod,nom

𝑐 .
Eqs. (6)–(9) model the discrete construction and continuous siz-

ng of production components within the minimal possible capacity
approd,min

𝑐 and maximal possible capacity capprod,max
𝑐 , thus determining

he installed capacity 𝑃 prod,nom
𝑐 of the production component 𝑐 ∈ 𝐶prod.

or this purpose, we adapt the equations from Voll et al. (2013) that
mploy the linearization from Glover (1975) leading to

̃prod,nom
𝑐,𝑠,𝑡 ≤ 𝑍prod,part

𝑐,𝑠,𝑡 ⋅ capprod,max
𝑐 ∀ 𝑐 ∈ 𝐶prod, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 , (6)

̃prod,nom
𝑐,𝑠,𝑡 ≥ 𝑍prod,part

𝑐,𝑠,𝑡 ⋅ capprod,min
𝑐 ∀ 𝑐 ∈ 𝐶prod, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 , (7)

̃prod,nom
𝑐,𝑠,𝑡 ≤ 𝑃 prod,nom

𝑐 ∀ 𝑐 ∈ 𝐶prod, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 , (8)
̃prod,nom
𝑐,𝑠,𝑡 ≥ 𝑃 prod,nom

𝑐

+ (𝑍prod,part
𝑐,𝑠,𝑡 − 1) ⋅ capprod,max

𝑐 ∀ 𝑐 ∈ 𝐶prod, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 . (9)

For each production component, the sizing decision is coupled with
he operation, since the installed capacity scales the piecewise-affine
inearization of the part-load behavior. In Eqs. (6)–(9), we introduce
he auxiliary capacity 𝑃 prod,nom

𝑐,𝑠,𝑡 and the binary variable 𝑍prod,part
𝑐,𝑠,𝑡 . The

inary variable 𝑍prod,part
𝑐,𝑠,𝑡 equals one if the part-load segment 𝑠 is active

or production component 𝑐 in time step 𝑡. The auxiliary capacity
̃prod,nom
𝑐,𝑠,𝑡 is equal to the capacity 𝑃 prod,nom

𝑐 for the active part-load
egment and scales the piecewise-affine linearization of the part-load
ehavior. Thus, for the active part-load segment, Eqs. (6)–(9) ensure
hat the auxiliary capacity 𝑃 prod,nom

𝑐,𝑠,𝑡 equals the production capacity
prod,nom
𝑐 . Otherwise, 𝑍prod,part

𝑐,𝑠,𝑡 as well as 𝑃 prod,nom
𝑐,𝑠,𝑡 are zero.

Finally, Eq. (10) ensures that at most one part-load segment is active
or production component 𝑐 and time step 𝑡:
∑

∈𝑆
𝑍prod,part

𝑐,𝑠,𝑡 ≤ 1 ∀ 𝑐 ∈ 𝐶prod, 𝑡 ∈ 𝑇 . (10)

Eqs. (11)–(13) model the part-load behavior as piecewise-affine
inearization. Exemplary, Fig. 2 shows the modeling of the part-load be-

avior for boiler B1, which converts natural gas into heat. The boiler B1
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Fig. 2. Exemplary relation between the decision variables for a boiler B1 operated in the part-load segment s1. The decision variables are the capacity 𝑃 prod,nom
B1 , the load 𝑃 prod,load

B1,s1,𝑡

and the input/output 𝑃 prod
gas,B1,𝑡 / 𝑃 prod

heat,B1,𝑡. The auxiliary capacity 𝑃 prod,nom
B1,s1,𝑡 equals the capacity 𝑃 prod,nom

B1 for the active part-load segment (𝑍prod,part
B1,s1,𝑡 ) and scales the piecewise-affine

inearization of the part-load behavior.
𝑃

I
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as the capacity 𝑃 prod,nom
B1 and is operated in part-load segment s1.

n this case, the part-load segment s1 is set active since the binary
ariable 𝑍prod,part

B1,s1,𝑡 equals one. Based on the active part-load segment
1, the input/output 𝑃 prod

gas,B1,𝑡 / 𝑃 prod
heat,B1,𝑡 is determined depending on

he load 𝑃 prod,load
B1,s1,𝑡 . Therein, the minimal relative load rlB1,s1 and the

maximum relative load rlB1,s1 multiplied by the auxiliary capacity
̃prod,nom
B1,s1,𝑡 restrict the load 𝑃 prod,load

B1,s1,𝑡 to the active segment s1.
Eqs. (11)–(13) generalize the example from Fig. 2. For each produc-

ion component 𝑐 ∈ 𝐶prod and time step 𝑡 ∈ 𝑇 , Eq. (11) determines the
nput/output 𝑃 prod

𝑏,𝑐,𝑡 depending on the load 𝑃 prod,load
𝑐,𝑠,𝑡 as

prod
𝑏,𝑐,𝑡 =

∑

𝑠∈𝑆
𝜃𝑏,𝑐,𝑠 ⋅ 𝑃

prod,nom
𝑐,𝑠,𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
constant part

+ 𝜃̇𝑏,𝑐,𝑠 ⋅ (𝑃
prod,load
𝑐,𝑠,𝑡 − rl𝑐,𝑠 ⋅ 𝑃

prod,nom
𝑐,𝑠,𝑡 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
linear part

∀ 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶prod, 𝑡 ∈ 𝑇 .

(11)

The right side of Eq. (11) accounts for the part-load behavior as
piecewise-affine linearization with 𝑠 ∈ 𝑆 part-load segments. For each
part-load segment, the piecewise-affine linearization consists of two
parts: a constant part modeling the minimal load and a linear part for
the additional input/output along the segment. For the constant part,
the multiplication of the parameter 𝜃𝑏,𝑐,𝑠 with the auxiliary capacity
𝑃 prod,nom
𝑐,𝑠,𝑡 determines the input/output at the minimal load for the

active part-load segment. For the linear part, the multiplication of the
gradient 𝜃̇𝑏,𝑐,𝑠 with the difference between the actual load 𝑃 prod,load

𝑐,𝑠,𝑡
nd the minimal load of the part-load segment determines the addi-
ional input/output along the segment. Note that the auxiliary capacity
̃prod,nom
𝑐,𝑠,𝑡 is 0 for all part-load segments that are not active. Thus, the
um over over all part-load segments yields the input/output 𝑃 prod

𝑏,𝑐,𝑡 ,
ince only one part-load segment is active in each time step.

For production component 𝑐 and in each time step 𝑡, Eqs. (12) and
13) restrict the load 𝑃 prod,load

𝑐,𝑠,𝑡 to the minimum and maximum possible
oad within the part-load segment 𝑠

prod,load
𝑐,𝑠,𝑡 ≤ rl𝑐,𝑠 ⋅ 𝑃

prod,nom
𝑐,𝑠,𝑡 ∀ 𝑐 ∈ 𝐶prod, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 , (12)

𝑃 prod,load
𝑐,𝑠,𝑡 ≥ rl𝑐,𝑠 ⋅ 𝑃

prod,nom
𝑐,𝑠,𝑡 ∀ 𝑐 ∈ 𝐶prod, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 . (13)

Therein, the load is restricted by multiplying the auxiliary capacity
𝑃 prod,nom
𝑐,𝑠,𝑡 with the minimal relative load rl𝑐,𝑠 and the maximum relative

load rl𝑐,𝑠.
Production components, such as wind turbines or photovoltaic sys-

ems, are not available at all or only partially available in some time
5

t

steps 𝑡. The relative availability av𝑐,𝑡, therefore, describes the share
of usable capacity for each time step 𝑡 and component 𝑐. The load
𝑃 prod,load
𝑐,𝑠,𝑡 is then restricted by the usable production capacity with

𝑃 prod,load
𝑐,𝑠,𝑡 ≤ 𝑃 prod,nom

𝑐 ⋅ av𝑐,𝑡 ∀ 𝑐 ∈ 𝐶prod, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 . (14)

The usable production capacity is determined for each production
component 𝑐 and time step 𝑡 as the multiplication of the relative
availability av𝑐,𝑡 and the capacity 𝑃 prod,nom

𝑐 .

2.3. Storage components

This section presents the equations for the design, the sizing, and the
operation of discrete storage components 𝑐 ∈ 𝐶stor. Storage components
store a product 𝑏 ∈ 𝐵 at time step 𝑡 ∈ 𝑇 and discharge the product at
a later time step, i.e., the storage component can either be charged or
discharged in each time step. To allow either charging or discharging in
each time step, the binary variables 𝑍stor,in

𝑐,𝑡 and 𝑍stor,out
𝑐,𝑡 are introduced

to model the storage operation.
Eqs. (15) and (16) model the construction and sizing of a discrete

storage component 𝑐 ∈ 𝐶stor with

𝑃 stor,nom
𝑐 ≤ capstor,max

𝑐 ⋅𝑍stor,exist
𝑐 ∀ 𝑐 ∈ 𝐶stor, (15)

stor,nom
𝑐 ≥ capstor,min

𝑐 ⋅𝑍stor,exist
𝑐 ∀ 𝑐 ∈ 𝐶stor. (16)

The binary variable 𝑍stor,exist
𝑐 equals one if the storage 𝑐 exists.

n this case, the storage capacity 𝑃 stor,nom
𝑐 is constrained between the

inimum possible storage capacity capstor,min
𝑐 and maximum possible

torage capacity capstor,max
𝑐 . If the storage component 𝑐 is not built, the

inary variable 𝑍stor,exist
𝑐 equals zero.

The storage capacity 𝑃 stor,nom
𝑐 restricts the storage level 𝑆𝐿𝑐,𝑡 for all

ime steps 𝑡 ∈ 𝑇 and storage components 𝑐 ∈ 𝐶stor with

𝐿𝑐,𝑡 ≤ 𝑃 stor,nom
𝑐 ∀ 𝑐 ∈ 𝐶stor, 𝑡 ∈ 𝑇 . (17)

For some storage components (e.g., battery storage components),
t is not possible to discharge the storage completely. Hence, Eq. (18)
odels the minimal storage level during operation

𝐿𝑐,𝑡 ≥ 𝑃 stor,nom
𝑐 ⋅ slstor,min

𝑐 ∀ 𝑐 ∈ 𝐶stor, 𝑡 ∈ 𝑇 . (18)

For all time steps 𝑡 ∈ 𝑇 , the storage level 𝑆𝐿𝑐,𝑡 needs to be greater

han the minimal usable storage capacity. The minimal usable storage
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capacity is the minimal relative storage level slstor,min
𝑐 multiplied with

the storage capacity 𝑃 stor,nom
𝑐 in Eq. (18).

The load variables 𝑃 stor,load,in
𝑏,𝑐,𝑡 and 𝑃 stor,load,out

𝑏,𝑐,𝑡 model the operation
of the storage component. For each storage component 𝑐, the load
variables specify the amount of product 𝑏 charged or discharged in
time step 𝑡. Depending on the load variables 𝑃 stor,load,in

𝑏,𝑐,𝑡 and 𝑃 stor,load,out
𝑏,𝑐,𝑡 ,

q. (19) models the storage level 𝑆𝐿𝑐,𝑡 of each storage component
∈ 𝐶stor for the product 𝑏 ∈ 𝐵 as

𝐿𝑐,𝑡 ⋅ (1 − 𝜂stor,loss
𝑐 ) + 𝛥t𝑡(𝑃

stor,load,in
𝑏,𝑐,𝑡 ⋅ 𝜂stor,in

𝑏,𝑐 − 𝑃 stor,load,out
𝑏,𝑐,𝑡 ⋅ 𝜂stor,out

𝑏,𝑐 )

= 𝑆𝐿𝑐,𝑡+1 ∀ 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶stor, 𝑡 ∈ 𝑇 .

(19)

The storage level 𝑆𝐿𝑐,𝑡+1 in time step 𝑡 + 1 results from the storage
level 𝑆𝐿𝑐,𝑡 in the previous time step 𝑡 plus the charging load 𝑃 stor,load,in

𝑏,𝑐,𝑡
and minus the discharging load 𝑃 stor,load,out

𝑏,𝑐,𝑡 multiplied with the time
step duration 𝛥𝑡𝑡. In Eq. (19), we consider charging and discharging
losses by including the efficiencies 𝜂stor,in

𝑏,𝑐 and 𝜂stor,out
𝑏,𝑐 . In addition, our

modeling accounts for storage losses during a time step by including
the relative storage efficiency 𝜂stor,loss

𝑐 in Eq. (19).
To reduce computational complexity, our framework includes clus-

tering techniques that aggregate the time steps 𝑇 to typical periods,
e.g., typical days or typical weeks (Kotzur et al., 2018). For each of the
typical periods, we consider closed and repeating cycles for the storage
units. Thus, for an exemplary typical period, Eq. (20) links the storage
level at the last time step tend with the initial time step t0:

𝐿𝑐,tend = 𝑆𝐿𝑐,t0 ∀ 𝑐 ∈ 𝐶stor. (20)

Our storage modeling assumes a fixed ratio of storage load to
torage capacity denoted by the parameter pcrstor

𝑏,𝑐 . Since the maximum
torage load often scales with the storage capacity, Eqs. (21) and (22)
estrict the load for charging 𝑃 stor,load,in

𝑏,𝑐,𝑡 and discharging 𝑃 stor,load,out
𝑏,𝑐,𝑡 as

𝑃 stor,load,in
𝑏,𝑐,𝑡 ≤ pcrstor

𝑏,𝑐 ⋅ 𝑃 stor,nom
𝑐 ∀ 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶stor, 𝑡 ∈ 𝑇 , (21)

stor,load,out
𝑏,𝑐,𝑡 ≤ pcrstor

𝑏,𝑐 ⋅ 𝑃 stor,nom
𝑐 ∀ 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶stor, 𝑡 ∈ 𝑇 . (22)

For charging and discharging, the load is restricted to the stor-
ge load to storage capacity ratio pcrstor

𝑏,𝑐 multiplied with the storage
apacity 𝑃 stor,nom

𝑐 .
Finally, we introduce the binary variables 𝑍stor,in

𝑐,𝑡 and 𝑍stor,out
𝑐,𝑡 to

odel the storage operation. The binary variables equal one if the stor-
ge component 𝑐 is charged and discharged in time step 𝑡, respectively,
nd zero otherwise. For each storage component 𝑐 ∈ 𝐶stor, Eq. (23)
llows that either charging or discharging is possible in time step 𝑡 ∈ 𝑇 .

stor,in
𝑐,𝑡 +𝑍stor,out

𝑐,𝑡 ≤ 1 ∀ 𝑐 ∈ 𝐶stor, 𝑡 ∈ 𝑇 . (23)

Subsequently, the load is limited by the Big-M constraints Eqs. (24)
nd (25) with

𝑃 stor,load,in
𝑏,𝑐,𝑡 ≤ pcrstor

𝑏,𝑐 ⋅ capstor,max
𝑐 ⋅𝑍stor,in

𝑐,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶stor, 𝑡 ∈ 𝑇 ,

(24)
stor,load,out
𝑏,𝑐,𝑡 ≤ pcrstor

𝑏,𝑐 ⋅ capstor,max
𝑐 ⋅𝑍stor,out

𝑐,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶stor, 𝑡 ∈ 𝑇 .

(25)

The Big M is modeled as the multiplication of the power-to-capacity
ratio pcrstor

𝑏,𝑐 multiplied by the maximum possible storage size capstor,max
𝑐 .

Finally, the extensions presented in Section 2 allow the optimiza-
tion and holistic assessment of industrial energy systems with discrete
production and storage components. Thereby, the open-source SecMOD
MILP framework provides a multi-objective optimization with a flex-
ible objective function that allows us to find both cost-optimal and
6

environmentally optimal solutions.
3. Case study: Integrating PTES in an industrial energy system
design

In our case study, we demonstrate the capabilities of SecMOD MILP
by capacity expansion planning in a sector-coupled industrial energy
system. We optimize the system economically and environmentally in
two scenarios with varying electricity and natural gas prices.

As discussed above, pumped-thermal energy storage (PTES) systems
can strengthen sector-coupling by addressing volatility in electricity
supply to flexibly provide both heat and electricity (Dumont et al.,
2020). We, therefore, exploit the modular structure of SecMOD to
include PTES as an emerging technology in the superstructure. Our
study aims to examine the economic and environmental competitive-
ness of PTES in the industrial energy system under varying energy price
scenarios for natural gas and electricity.

3.1. Superstructure of the industrial energy system

As a case study to evaluate the integration of the PTES, we examine
a real-world industrial energy system located in Germany (Fig. 3),
which was introduced by Voll et al. (2013) and extended by Baumgärt-
ner et al. (2019). We expand the superstructure by adding low-carbon
technologies (Baumgärtner et al., 2021), such as wind turbines, battery
storage, and photovoltaics. Heat can be provided by combined heat
and power units (CHP), natural gas boilers, or electric boilers. Cooling
power is provided by absorption chillers or compression chillers, re-
spectively. The superstructure of the industrial energy system consists
of the components shown in Fig. 3.

The system is designed to satisfy temporally resolved electricity,
heat, and cooling demands. In our adapted version, grid electricity
and natural gas can be imported at specific costs and environmental
impacts. Overproduction of electricity is allowed to occur at no costs
or revenues to account for curtailment, while overproduction of heat
or cooling is prohibited.

In addition, we further model a PTES system as an emerging tech-
nology. The PTES system consists of a high-temperature heat pump
(based on Baumgärtner et al., 2021), sensible thermal storage with
water as storage medium (Baumgärtner et al., 2019), and an organic
Rankine cycle (ORC) (based on Stoppato and Benato, 2020, Tartière
and Astolfi, 2017, and Tillmanns et al., 2022). The PTES can supply
heat directly or feed the ORC for the reconversion to electricity, thereby
adding flexibility across sectors.

Economies of scale during sizing are taken into account based
on cost correlations by Baumgärtner et al. (2019) by allowing small,
medium, and large components for the CHPs, chillers, and boilers. The
components have different specific costs and part-load behavior. For
all units, sizing can be chosen continuously between the minimum and
maximum component sizes. Compared to a linear optimization prob-
lem, a MILP model can reflect component interaction that is influenced
by part-load behavior. Part-load behavior and especially minimal part-
load introduce additional restrictions to the energy system, such that
some operation states are not possible in a MILP. These real-world
features of energy systems lead, e.g., to the installation of redundant
units (Voll et al., 2013). In comparison, a linear model, which neglects
efficiency reductions due to part-load behavior and discrete component
and operating limits, would underestimate the cost and climate change
impact compared to the MILP. For a more detailed discussion about
how model complexity impacts the results of design optimizations,
please also refer to Wirtz et al. (2021).

We extend all component models with environmental models. Here,
we employ the database ecoinvent 3.7.1 (Wernet et al., 2016). Each life
cycle inventory (LCI) quantifies the material and energy flows needed
to build and operate the component. We model the direct inputs and
outputs of component operation using piecewise-affine linearization
to reflect part-load efficiencies. The European Commission (Joint Re-

search Center, 2010) recommends the determination of environmental
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Fig. 3. Simplified superstructure of the utility system providing electricity (𝑃𝑒𝑙), heating (𝑄̇ℎ𝑒𝑎𝑡), and cooling (𝑄̇𝑐𝑜𝑜𝑙) supply (extending on Voll et al., 2013). PTES is the
pumped-thermal energy storage. For chillers and boilers, multiple units can be employed.
impacts using the Environmental Footprint methodology. This work
focuses on the impact category ‘‘climate change’’ of Environmental
Footprints 2.0, quantifying the global warming impact. We provide
detailed information on the components in the Supporting Information.

We consider one year of operation, aggregated to six typical days
with hourly resolution. Clustering is readily integrated into SecMOD.
As a clustering technique for temporal aggregation, we use k-medoids
(Kotzur et al., 2018). The economic objective function is the total
annualized system cost. In this work, we consider an annualization
horizon of 8 years and an interest rate of 5%.

In recent months, energy prices in Germany have changed rapidly,
resulting in significantly altered costs for the operation of industrial
energy systems. To quantitatively evaluate the implications of the
price change on the optimal system design, we optimize two eco-
nomic scenarios: Firstly, we consider a low-price scenario for natu-
ral gas (2.6 ct/kWh on average) and electricity (7.5 ct/kWh on av-
erage). Secondly, we consider a high-price scenario for natural gas
(17.44 ct/kWh on average EEX Market Data Services, 2022) and elec-
tricity (26.64 ct/kWh on average BDEW, 2022). The price development
changes the ratio of the electricity price to the gas price from 2.9 to 1.5,
rendering electricity more favorable.

Thirdly, as an environmental objective, we minimize the annual
climate impact. SecMOD allows us to consider environmental impacts
either over parts of the life cycle or holistically over the whole life
cycle. In our case study, the impacts from construction are annualized
over the unit lifetime without discounting. The annual climate impact
considers the whole life cycle of the system components.

Our model comprises 26 770 equations, 800 continuous variables,
and 3746 binary variables after the presolve for the climate-optimal
case. All other cases have a comparable number of equations, variables,
and binary variables. All calculations are performed using 4 Intel-Xeon
CPUs with 3.0 GHz and 64 GB RAM with Gurobi 9.0.0 and solved
within a few minutes. Please note that in SecMOD, the optimization of
larger problems is also possible. We terminate each optimization run
when the optimality gap for each optimization reaches our termination
criterion of one percent.

3.2. Results: economically and climate optimal energy supply structure

The scenarios show a trade-off between costs and climate impact
(Fig. 4): While the cost-optimized system has the least cost in the low-
price scenario, it also emits the most greenhouse gas emissions. In the
high-price scenario, the cost increases by more than a factor of three,
while the climate impact is reduced by more than half for the cost-
optimal system. Thus, the high prices provide a strong incentive for
decarbonization. The climate optimum is more than factor of 3.5 more
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expensive than the least-cost design with low energy prices. However,
the cost of the climate optimum is not significantly higher than the
cost of the high-price scenario. The climate impact is cut by around
80% compared to the low-price scenario.

The epsilon-constraint method generates Pareto frontiers that rep-
resent trade-offs in the multi-objective optimization. For each price
scenario, we generated a Pareto frontier with five equidistant points.
In SecMOD, other points of the Pareto frontier can also be calculated
by manual selection to specifically adjust the resolution of the solution
space. Future work could integrate advanced automated schemes to
explore the Pareto frontier (cf. Mavrotas, 2009, Halffmann et al., 2022
and Petchrompo et al., 2022).

SecMOD can analyze in which phase of the life cycle emissions
occur: While infrastructure-related emissions contribute merely by 2%
to the overall climate impact in the cost-optimal system, infrastructure-
related emissions are responsible for 85% of the overall climate impact
in the climate-optimal scenario. Respectively, the role of infrastructure
also increases when assessing system cost. Our results thus underline
the need for a holistic assessment over the whole life cycle. Fig. 4 shows
that operational emissions account for the major share of emissions
in largely fossil-based systems. However, low-carbon energy systems
require a more holistic approach.

Regarding further environmental impacts, which can be automat-
ically assessed in SecMOD, we observe similar trends as in national
energy systems (Baumgärtner et al., 2021; Reinert et al., 2021; Rauner
and Budzinski, 2017): The low-carbon energy system leads to envi-
ronmental co-benefits in most impact categories. For example, fossil
resource depletion in the climate-optimal case is more than a factor of
five lower than in the low-price cost optimum. However, the holistic
approach of SecMOD also allows the detection of burden-shifting to
other environmental impacts. In our case study, burden shifting leads
to a significant increase in some impact categories, such as resource
depletion of minerals and metals (by a factor of 2.2). SecMOD can
be used to consider environmental impacts beyond climate change
in the objective function and to limit them in constraints. Further
research could analyze additional system designs by limiting other
environmental impacts. For example, limiting the permissible increase
in resource depletion of minerals and metals would likely move the
solution towards less resource-intensive components.

Compared to the LP model, the MILP optimization allows a detailed
analysis of the operational decisions for each component. Regarding the
operational decisions, the cost-optimal system with low prices provides
electricity predominantly by CHPs. Therefore, CHPs also provide the
major share of heating. Furthermore, cooling is provided partly by the
compression chillers and partly by the absorption chillers. Here, the



Computers and Chemical Engineering 172 (2023) 108176C. Reinert et al.
Fig. 4. Annualized cost and climate impact are shown normalized by the respective value in the cost-optimal low-price scenario (top). We further indicate the contribution to
costs and climate impact of investment (red, dashed) and operational (blue) phase. Annual electricity, heat, and cooling supply (positive values) and endogenous demand (negative
values) for the cost-optimal low and high price scenarios and the climate-optimal case (bottom). All energy flows are normalized by the electricity flow in the low-price scenario.
For each cost scenario, we indicate the Pareto frontier between the cost-optimal and climate-optimal case in gray.
absorption chillers are used to maximize the load hours of the CHP by
employing heat-based cooling.

In the high-price scenario, electricity is provided mainly by local
renewable electricity production via wind turbines, as employing the
CHPs is much less economically competitive. CHPs are still utilized but
to a much lower share. The heat and cooling supply is largely electrified
using the high-temperature heat pump and the compression chillers.

When the climate impact is minimized, the system almost entirely
relies on wind electricity. The heat and cooling supply is electrified, and
battery and thermal storage are used to decouple electricity supply and
demand.

However, in our scenarios, the PTES system as a whole is not used
in any scenario: While some components of the PTES system – heat
pumps and thermal storage – are used in most systems to couple the
electricity and heat sectors, the organic Rankine cycle is never used to
provide electricity.

The studied PTES system is outperformed by other flexibility options
and, therefore, not employed as a whole to provide electricity flexibly.
In our scenarios, using heat to provide heating or cooling is the more
viable option than reconversion to electricity.

Still, our case study underlines the need for local electricity pro-
duction and electrification by sector coupling for both economic and
environmental purposes.
8

4. Conclusions

In this work, we extend SecMOD to a MILP optimization framework
to consider the optimal design and operation of industrial energy sys-
tems. Based on a user-defined superstructure, the MILP extension takes
into account the sizing of discrete production and storage components,
including their part-load behavior. For a holistic assessment of the con-
sidered system, the framework includes a life-cycle assessment in addi-
tion to an economic assessment. In this context, both the construction
and operational impacts are considered. A flexible objective function
allows for the multi-criteria optimization of the system to evaluate the
trade-offs between different environmental impacts and costs. Hence,
the modular structure of the extended framework allows for optimizing
and analyzing systems with regard to various scopes and aspects. As
an important tool for the holistic assessment of industrial energy sys-
tems, we publish the extended SecMOD MILP framework open-source
under https://git-ce.rwth-aachen.de/ltt/secmod-milp. Additionally, we
include a minimal example.

We use SecMOD MILP for a holistic design optimization of an
industrial energy system. Further, we demonstrate the framework’s
capabilities and discuss trade-offs for the system design in two scenarios
with varying energy prices under an economic and environmental
objective. The results of our case study confirm that sector coupling

https://git-ce.rwth-aachen.de/ltt/secmod-milp
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and energy storage are essential for industrial decarbonization and
are economically and environmentally competitive. Regarding pumped-
thermal energy storage to enhance flexibility, we find that the heat
pump and thermal storage of the PTES system are economically and
environmentally viable in most scenarios. However, reconversion to
electricity is neither economically nor environmentally competitive for
the studied system. However, reconversion to electricity could be eco-
nomically and environmentally competitive in another system setup,
where fewer alternative routes for decarbonization and electrification
exist. For example, Tillmanns et al. (2022) discuss the potential of PTES
in more detail. PTES is still under development, and thus, significant
improvements regarding efficiency and costs are expected (Olympios
et al., 2021). A promising approach to decrease PTES cost is the re-
use of existing equipment from discontinued coal-fired power plants
for the reconversion to electricity (Steinmann et al., 2020). Overall,
the economic and environmental competitiveness depends on various
factors — the most significant factors are the applicability of alter-
native components and the environmental and economic performance
(e.g., costs, longevity, and conversion efficiency) of pumped-thermal
energy storage compared to alternative technologies.

We hope that our framework can contribute to understanding trade-
offs in industrial energy systems and hence aids in realizing environ-
mental improvements that can be achieved cost-efficiently.

Nomenclature

Symbol Explanation
Sets
𝐵 Products
𝐶prod Production components
𝐶stor Storage components
𝑇 Time steps
𝐼𝑀𝑃 Impact categories
𝑆 Part-load segments
Variables
𝑃 prod,nom
𝑐 Production capacity

𝑃 stor,nom
𝑐 Storage capacity

𝑃 prod
𝑏,𝑐,𝑡 Production/consumption of production

component
𝑃 prod,load
𝑐,𝑠,𝑡 Load of production component

𝑃 stor,load,in
𝑏,𝑐,𝑡 Charging amount of storage component

𝑃 stor,load,out
𝑏,𝑐,𝑡 Discharging amount of storage component

𝑃 buy
𝑏,𝑡 Sale of products

𝑃 sell
𝑏,𝑡 Purchase of products

𝑃 prod,nom
𝑐,𝑠,𝑡 Auxiliary capacity of production component

𝑆𝐿𝑐,𝑡 Storage level
𝑍prod,part

𝑐,𝑠,𝑡 Binary variable for part-load behavior of
production component

𝑍stor,exist
𝑐 Binary variable for existence of storage

component
𝐶𝐴𝑃𝐸𝑋𝑖𝑚𝑝 Annualized capital expenditures
𝑂𝑃𝐸𝑋prod

𝑖𝑚𝑝 Operational expenditures of production
components

𝑂𝑃𝐸𝑋stor
𝑖𝑚𝑝 Operational expenditures of storage components

𝑂𝑃𝐸𝑋exchange
𝑖𝑚𝑝 Operational expenditures for purchase and sale of

products
Parameters
kinv,prod
𝑐,𝑖𝑚𝑝 Specific investment costs for production

components
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kinv,stor
𝑐,𝑖𝑚𝑝 Specific investment costs for storage components

kop,prod
𝑐,𝑖𝑚𝑝 Specific operating costs for production components

kop,stor
𝑐,𝑖𝑚𝑝 Specific operating costs for storage components

kbuy
𝑏,𝑡,𝑖𝑚𝑝 Specific costs to buy products

ksell
𝑏,𝑡,𝑖𝑚𝑝 Specific costs to sell products

pvf𝑐 Present value annuity factor
𝛥𝑡𝑡 Time step duration
capexlim

𝑖𝑚𝑝 Capital expenditures limit
opexlim

𝑖𝑚𝑝 Operational expenditures limit
totexlim

𝑖𝑚𝑝 Total expenditures limit
d𝑏,𝑡 Product demand
capprod,max

𝑐 Maximal possible production capacity
capprod,min

𝑐 Minimal possible production capacity
capstor,max

𝑐 Maximal possible storage capacity
capstor,min

𝑐 Minimal possible storage capacity
𝜃𝑏,𝑐,𝑠 Constant part of product ratio matrix
𝜃̇𝑏,𝑐,𝑠 Linear part of product ratio matrix
rl𝑐,𝑠 Minimum relative load
rl𝑐,𝑠 Maximum relative load
av𝑐,𝑡 Relative availability
slstor,min
𝑐 Minimal relative storage level

𝜂stor,loss
𝑐 Relative storage efficiency
𝜂stor,in
𝑏,𝑐 Charging efficiency
𝜂stor,out
𝑏,𝑐 Discharging efficiency

pcrstor
𝑏,𝑐 Power-to-capacity ratio
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