001021919 001__ 1021919
001021919 005__ 20240712112913.0
001021919 0247_ $$2doi$$a10.48550/ARXIV.2302.05222
001021919 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01067
001021919 037__ $$aFZJ-2024-01067
001021919 1001_ $$0P:(DE-HGF)0$$aReinert, Christiane$$b0
001021919 245__ $$aThis is SpArta: Rigorous Optimization of Regionally Resolved Energy Systems by Spatial Aggregation and Decomposition
001021919 260__ $$barXiv$$c2023
001021919 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1706695870_5584
001021919 3367_ $$2ORCID$$aWORKING_PAPER
001021919 3367_ $$028$$2EndNote$$aElectronic Article
001021919 3367_ $$2DRIVER$$apreprint
001021919 3367_ $$2BibTeX$$aARTICLE
001021919 3367_ $$2DataCite$$aOutput Types/Working Paper
001021919 520__ $$aEnergy systems with high shares of renewable energy are characterized by local variability and grid limitations. The synthesis of such energy systems, therefore, requires models with high spatial resolution. However, high spatial resolution increases the computational effort. Here, we present the SpArta method for rigorous optimization of regionally resolved energy systems by Spatial Aggregation and decomposition. SpArta significantly reduces computational effort while maintaining the full spatial resolution of sector-coupled energy systems. SpArta first reduces problem size by spatially aggregating the energy system using clustering. The aggregated problem is then relaxed and restricted to obtain a lower and an upper bound. The spatial resolution is iteratively increased until the difference between upper and lower bound satisfies a predefined optimality gap. Finally, each cluster of the aggregated problem is redesigned at full resolution. For this purpose, SpArta decomposes the original synthesis problem into subproblems for each cluster. Combining the redesigned cluster solutions yields an optimal feasible solution of the full-scale problem within a predefined optimality gap. SpArta thus optimizes large-scale energy systems rigorously with significant reductions in computational effort. We apply SpArta to a case study of the sector-coupled German energy system, reducing the computational time by a factor of 7.5, compared to the optimization of the same problem at full spatial resolution. As SpArta shows a linear increase in computational time with problem size, SpArta enables computing larger problems allowing to resolve energy system designs with improved accuracy.
001021919 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001021919 588__ $$aDataset connected to DataCite
001021919 650_7 $$2Other$$aOptimization and Control (math.OC)
001021919 650_7 $$2Other$$aSystems and Control (eess.SY)
001021919 650_7 $$2Other$$aFOS: Mathematics
001021919 650_7 $$2Other$$aFOS: Electrical engineering, electronic engineering, information engineering
001021919 7001_ $$0P:(DE-HGF)0$$aNilges, Benedikt$$b1
001021919 7001_ $$0P:(DE-HGF)0$$aBaumgärtner, Nils$$b2
001021919 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b3$$eCorresponding author
001021919 773__ $$a10.48550/ARXIV.2302.05222
001021919 8564_ $$uhttps://juser.fz-juelich.de/record/1021919/files/2302.05222.pdf$$yOpenAccess
001021919 8564_ $$uhttps://juser.fz-juelich.de/record/1021919/files/2302.05222.gif?subformat=icon$$xicon$$yOpenAccess
001021919 8564_ $$uhttps://juser.fz-juelich.de/record/1021919/files/2302.05222.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021919 8564_ $$uhttps://juser.fz-juelich.de/record/1021919/files/2302.05222.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021919 8564_ $$uhttps://juser.fz-juelich.de/record/1021919/files/2302.05222.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021919 909CO $$ooai:juser.fz-juelich.de:1021919$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021919 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001021919 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
001021919 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
001021919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b3$$kFZJ
001021919 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b3$$kRWTH
001021919 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zurich$$b3
001021919 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001021919 9141_ $$y2023
001021919 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021919 920__ $$lyes
001021919 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001021919 9801_ $$aFullTexts
001021919 980__ $$apreprint
001021919 980__ $$aVDB
001021919 980__ $$aUNRESTRICTED
001021919 980__ $$aI:(DE-Juel1)IEK-10-20170217
001021919 981__ $$aI:(DE-Juel1)ICE-1-20170217