001021940 001__ 1021940
001021940 005__ 20250204113757.0
001021940 0247_ $$2doi$$a10.3389/fsoil.2024.1346028
001021940 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01080
001021940 0247_ $$2WOS$$aWOS:001173661400001
001021940 037__ $$aFZJ-2024-01080
001021940 082__ $$a630
001021940 1001_ $$0P:(DE-HGF)0$$aO'Leary, Dave$$b0
001021940 245__ $$aLinking electromagnetic induction data to soil properties at field scales aided by neural network clustering
001021940 260__ $$aLausanne$$bFrontiers Media$$c2024
001021940 3367_ $$2DRIVER$$aarticle
001021940 3367_ $$2DataCite$$aOutput Types/Journal article
001021940 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708431918_8813
001021940 3367_ $$2BibTeX$$aARTICLE
001021940 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021940 3367_ $$00$$2EndNote$$aJournal Article
001021940 520__ $$aThe mapping of soil properties, such as soil texture, at the field scale is important in the context of national agricultural planning/policy and precision agriculture. Electromagnetic Induction (EMI) surveys are commonly used to measure soil apparent electrical conductivity and can provide valuable insights into such subsurface properties. Multi-receiver or multi-frequency instruments provide a vertical distribution of apparent conductivity beneath the instrument, while the mobility of such instruments allows for spatial coverage. Clustering is the grouping together of similar multidimensional data, such as the processed EMI data over a field. A neural network clustering process, where the number of clusters can be objectively determined, results in a set of one-dimensional apparent electrical conductivity cluster centers, which are representative of the entire threedimensional dataset. These cluster centers are used to guide inversions of apparent conductivity data to give an estimate of the true electrical conductivity distribution at a site. The method is applied to two sites and the results demonstrate a correlation between (true) electrical conductivity with sampled soil texture (sampled prior to the EMI surveys) which is superior to correlations where no clustering is included. The method has the potential to be developed further, with the aim of improving the prediction of soil properties at cluster scale, such as texture, from EMI data. A particularly important conclusion from this initial study is that EMI data should be acquired prior to a focused soil sampling campaign to calibrate the electrical conductivitysoil property correlations.
001021940 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001021940 536__ $$0G:(GEPRIS)357874777$$aDFG project 357874777 - FOR 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons (357874777)$$c357874777$$x1
001021940 588__ $$aDataset connected to DataCite
001021940 7001_ $$0P:(DE-Juel1)168418$$aBrogi, Cosimo$$b1
001021940 7001_ $$0P:(DE-HGF)0$$aBrown, Colin$$b2
001021940 7001_ $$0P:(DE-HGF)0$$aTuohy, Pat$$b3
001021940 7001_ $$0P:(DE-HGF)0$$aDaly, Eve$$b4$$eCorresponding author
001021940 773__ $$0PERI:(DE-600)3099984-4$$a10.3389/fsoil.2024.1346028$$p1346028$$tFrontiers in soil science$$v4$$x2673-8619$$y2024
001021940 8564_ $$uhttps://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.pdf$$yOpenAccess
001021940 8564_ $$uhttps://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.gif?subformat=icon$$xicon$$yOpenAccess
001021940 8564_ $$uhttps://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021940 8564_ $$uhttps://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021940 8564_ $$uhttps://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021940 909CO $$ooai:juser.fz-juelich.de:1021940$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021940 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Natural Sciences, College of Science, University of Galway, Ireland$$b0
001021940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168418$$aForschungszentrum Jülich$$b1$$kFZJ
001021940 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Natural Sciences, College of Science, University of Galway, Ireland$$b2
001021940 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Moorepark Animal and Grassland Research Centre, Teagasc, Ireland$$b3
001021940 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Natural Sciences, College of Science, University of Galway, Ireland$$b4
001021940 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001021940 9141_ $$y2024
001021940 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001021940 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021940 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
001021940 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
001021940 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001021940 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001021940 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-17T19:51:43Z
001021940 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-17T19:51:43Z
001021940 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-01-17T19:51:43Z
001021940 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001021940 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-10
001021940 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001021940 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001021940 920__ $$lyes
001021940 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001021940 980__ $$ajournal
001021940 980__ $$aVDB
001021940 980__ $$aUNRESTRICTED
001021940 980__ $$aI:(DE-Juel1)IBG-3-20101118
001021940 9801_ $$aFullTexts