001     1021940
005     20250204113757.0
024 7 _ |a 10.3389/fsoil.2024.1346028
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01080
|2 datacite_doi
024 7 _ |a WOS:001173661400001
|2 WOS
037 _ _ |a FZJ-2024-01080
082 _ _ |a 630
100 1 _ |a O'Leary, Dave
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Linking electromagnetic induction data to soil properties at field scales aided by neural network clustering
260 _ _ |a Lausanne
|c 2024
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708431918_8813
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The mapping of soil properties, such as soil texture, at the field scale is important in the context of national agricultural planning/policy and precision agriculture. Electromagnetic Induction (EMI) surveys are commonly used to measure soil apparent electrical conductivity and can provide valuable insights into such subsurface properties. Multi-receiver or multi-frequency instruments provide a vertical distribution of apparent conductivity beneath the instrument, while the mobility of such instruments allows for spatial coverage. Clustering is the grouping together of similar multidimensional data, such as the processed EMI data over a field. A neural network clustering process, where the number of clusters can be objectively determined, results in a set of one-dimensional apparent electrical conductivity cluster centers, which are representative of the entire threedimensional dataset. These cluster centers are used to guide inversions of apparent conductivity data to give an estimate of the true electrical conductivity distribution at a site. The method is applied to two sites and the results demonstrate a correlation between (true) electrical conductivity with sampled soil texture (sampled prior to the EMI surveys) which is superior to correlations where no clustering is included. The method has the potential to be developed further, with the aim of improving the prediction of soil properties at cluster scale, such as texture, from EMI data. A particularly important conclusion from this initial study is that EMI data should be acquired prior to a focused soil sampling campaign to calibrate the electrical conductivitysoil property correlations.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a DFG project 357874777 - FOR 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons (357874777)
|0 G:(GEPRIS)357874777
|c 357874777
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Brogi, Cosimo
|0 P:(DE-Juel1)168418
|b 1
700 1 _ |a Brown, Colin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tuohy, Pat
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Daly, Eve
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.3389/fsoil.2024.1346028
|0 PERI:(DE-600)3099984-4
|p 1346028
|t Frontiers in soil science
|v 4
|y 2024
|x 2673-8619
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021940/files/fsoil-04-1346028.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021940
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a School of Natural Sciences, College of Science, University of Galway, Ireland
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168418
910 1 _ |a School of Natural Sciences, College of Science, University of Galway, Ireland
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Moorepark Animal and Grassland Research Centre, Teagasc, Ireland
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a School of Natural Sciences, College of Science, University of Galway, Ireland
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-17T19:51:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-17T19:51:43Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-01-17T19:51:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21