001021974 001__ 1021974
001021974 005__ 20250204113757.0
001021974 0247_ $$2doi$$a10.1039/D3RA07096D
001021974 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01113
001021974 0247_ $$2pmid$$a38274173
001021974 0247_ $$2WOS$$aWOS:001148490900001
001021974 037__ $$aFZJ-2024-01113
001021974 041__ $$aEnglish
001021974 082__ $$a540
001021974 1001_ $$0P:(DE-Juel1)184710$$aFischer, Tom$$b0$$eCorresponding author
001021974 245__ $$aPost-treatment strategies for pyrophoric KOH-activated carbon nanofibres
001021974 260__ $$aLondon$$bRSC Publishing$$c2024
001021974 3367_ $$2DRIVER$$aarticle
001021974 3367_ $$2DataCite$$aOutput Types/Journal article
001021974 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706682190_12252
001021974 3367_ $$2BibTeX$$aARTICLE
001021974 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021974 3367_ $$00$$2EndNote$$aJournal Article
001021974 520__ $$aThe effect of two atmospheric post-treatment conditions directly after the KOH activation of polyacrylonitrile-based nanofibres is studied in this work. As post-treatment different N2 : O2 flow conditions, namely high O2-flow and low O2-flow, are applied and their impact on occurring reactions and carbon nanofibres' properties is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Raman spectroscopy, elemental analysis and CO2 and Ar gas adsorption. At high O2-flow conditions a pyrophoric effect was observed on the KOH-activated carbon nanofibers. Based on the obtained results from the TGA and DSC the pyrophoric effect is attributed to the oxidation reactions of metallic potassium formed during the KOH activation process and a consequent carbon combustion reaction. Suppression of this pyrophoric effect is achieved using the low O2-flow conditions due to a lower heat formation of the potassium oxidation and the absence of carbon combustion. Compared to the high O2-flow samples no partial destruction of the carbon nanofibers is observed in the SEM images. The determination of the adsorption isotherms, the surface area, the pore size distribution and the isosteric enthalpies of adsorption show the superior properties under low O2-flow conditions. The present micropore volume is increased from 0.424 cm3 g−1 at high O2-flow to 0.806 cm3 g−1 for low O2-flow samples, resulting in an increase of CO2 adsorption capacity of 38% up to 6.6 mmol g−1 at 1 bar. This significant improvement clearly points out the importance of considering highly exothermic potassium oxidation reactions and possible post-treatment strategies when applying KOH activation to electrospun carbon nanofiber materials.
001021974 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001021974 536__ $$0G:(GEPRIS)390919832$$aDFG project 390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)$$c390919832$$x1
001021974 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001021974 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021974 7001_ $$0P:(DE-Juel1)171715$$aKretzschmar, Ansgar$$b1
001021974 7001_ $$0P:(DE-Juel1)178824$$aSelmert, Victor$$b2
001021974 7001_ $$0P:(DE-Juel1)169518$$aJovanovic, Sven$$b3
001021974 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4
001021974 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b5
001021974 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001021974 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/D3RA07096D$$gVol. 14, no. 6, p. 3845 - 3856$$n6$$p3845 - 3856$$tRSC Advances$$v14$$x2046-2069$$y2024
001021974 8564_ $$uhttps://juser.fz-juelich.de/record/1021974/files/d3ra07096d.pdf$$yOpenAccess
001021974 8564_ $$uhttps://juser.fz-juelich.de/record/1021974/files/d3ra07096d.gif?subformat=icon$$xicon$$yOpenAccess
001021974 8564_ $$uhttps://juser.fz-juelich.de/record/1021974/files/d3ra07096d.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021974 8564_ $$uhttps://juser.fz-juelich.de/record/1021974/files/d3ra07096d.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021974 8564_ $$uhttps://juser.fz-juelich.de/record/1021974/files/d3ra07096d.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021974 909CO $$ooai:juser.fz-juelich.de:1021974$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184710$$aForschungszentrum Jülich$$b0$$kFZJ
001021974 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)184710$$aRWTH Aachen$$b0$$kRWTH
001021974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171715$$aForschungszentrum Jülich$$b1$$kFZJ
001021974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178824$$aForschungszentrum Jülich$$b2$$kFZJ
001021974 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178824$$aRWTH Aachen$$b2$$kRWTH
001021974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169518$$aForschungszentrum Jülich$$b3$$kFZJ
001021974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
001021974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b5$$kFZJ
001021974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001021974 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001021974 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001021974 9141_ $$y2024
001021974 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001021974 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001021974 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001021974 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
001021974 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021974 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
001021974 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-18$$wger
001021974 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2022$$d2024-12-18
001021974 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001021974 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001021974 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-23T09:21:02Z
001021974 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-23T09:21:02Z
001021974 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-23T09:21:02Z
001021974 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001021974 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001021974 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001021974 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001021974 920__ $$lyes
001021974 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001021974 9801_ $$aFullTexts
001021974 980__ $$ajournal
001021974 980__ $$aVDB
001021974 980__ $$aUNRESTRICTED
001021974 980__ $$aI:(DE-Juel1)IEK-9-20110218
001021974 981__ $$aI:(DE-Juel1)IET-1-20110218