001     1021976
005     20240130202645.0
024 7 _ |a 10.1101/2023.12.31.573801
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01115
|2 datacite_doi
037 _ _ |a FZJ-2024-01115
100 1 _ |a Wulan, Naren
|0 0009-0005-3974-7528
|b 0
245 _ _ |a Translating phenotypic prediction models from big to small anatomical MRI data using meta-matching
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1706624600_7629
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Individualized phenotypic prediction based on structural MRI is an important goal in neuroscience. Prediction performance increases with larger samples, but small-scale datasets with fewer than 200 participants are often unavoidable. We have previously proposed a "meta-matching" framework to translate models trained from large datasets to improve the prediction of new unseen phenotypes in small collection efforts. Meta-matching exploits correlations between phenotypes, yielding large improvement over classical machine learning when applied to prediction models using resting-state functional connectivity as input features. Here, we adapt the two best performing meta-matching variants ("meta-matching finetune" and "meta-matching stacking") from our previous study to work with T1-weighted MRI data by changing the base neural network architecture to a 3D convolution neural network. We compare the two meta-matching variants with elastic net and classical transfer learning using the UK Biobank (N = 36,461), Human Connectome Project Young Adults (HCP-YA) dataset (N = 1,017) and HCP-Aging dataset (N = 656). We find that meta-matching outperforms elastic net and classical transfer learning by a large margin, both when translating models within the same dataset, as well as translating models across datasets with different MRI scanners, acquisition protocols and demographics. For example, when translating a UK Biobank model to 100 HCP-YA participants, meta-matching finetune yielded a 136% improvement in variance explained over transfer learning, with an average absolute gain of 2.6% (minimum = -0.9%, maximum = 17.6%) across 35 phenotypes. Overall, our results highlight the versatility of the meta-matching framework.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a An, Lijun
|0 0000-0003-1030-4625
|b 1
700 1 _ |a Zhang, Chen
|b 2
700 1 _ |a Kong, Ru
|0 0000-0001-7842-0329
|b 3
700 1 _ |a Chen, Pansheng
|0 0009-0009-8881-8643
|b 4
700 1 _ |a Bzdok, Danilo
|0 P:(DE-Juel1)136848
|b 5
700 1 _ |a Eickhoff, Simon B
|0 P:(DE-Juel1)131678
|b 6
700 1 _ |a Holmes, Avram J
|0 0000-0001-6583-803X
|b 7
700 1 _ |a Yeo, B. T. Thomas
|0 0000-0002-0119-3276
|b 8
773 _ _ |a 10.1101/2023.12.31.573801
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021976/files/2023.12.31.573801v1.full.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021976/files/2023.12.31.573801v1.full.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021976/files/2023.12.31.573801v1.full.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021976/files/2023.12.31.573801v1.full.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021976/files/2023.12.31.573801v1.full.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021976
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21