001     1021989
005     20250204113758.0
024 7 _ |a 10.1103/PhysRevResearch.6.013095
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01128
|2 datacite_doi
024 7 _ |a WOS:001156817300005
|2 WOS
037 _ _ |a FZJ-2024-01128
082 _ _ |a 530
100 1 _ |a Zeer, Mahmoud
|0 P:(DE-Juel1)186814
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Promoting p -based Hall effects by p − d − f hybridization in Gd-based dichalcogenides
260 _ _ |a College Park, MD
|c 2024
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707824277_12017
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Supported by Palestinian-German Science Bridge (BMBF Grant No. 01DH16027), Deutsche Forschungsgemeinschaft (DFG, Ger-man Research Foundation) - TRR 288 - 422213477 (Project No. B06), CRC 1238 - 277146847 (Project No. C01), and the Sino-German research project DISTOMAT (Grant No. MO 1731/10-1).
520 _ _ |a We conduct a first-principles study of Hall effects in rare-earth dichalcogenides, focusing on monolayers of the H-phase EuX2 and GdX2 , where X = S, Se, and Te. Our predictions reveal that all EuX2 and GdX2 systems exhibit high magnetic moments and wide band gaps. We observe that while in the case of EuX2 the p and f states hybridize directly below the Fermi energy, the absence of f and d states of Gd at the Fermi energy results in the p-like spin-polarized electronic structure of GdX2 , which mediates p-based magnetotransport. Notably, these systems display significant anomalous, spin, and orbital Hall conductivities. We find that in GdX2 , the strength of correlations controls the relative position of the p, d, and f states and their hybridization, which has a crucial impact on p-state polarization and the anomalous Hall effect, but not the spin and orbital Hall effects. Moreover, we find that the application of strain can significantly modify the electronic structure of the monolayers, resulting in quantized charge, spin, and orbital transport in GdTe 2 via a strain-mediated orbital inversion mechanism taking place at the Fermi energy. Our findings suggest that rare-earth dichalcogenides hold promise as a platform for topological spintronics and orbitronics.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)
|0 G:(GEPRIS)444844585
|c 444844585
|x 1
536 _ _ |a SFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210)
|0 G:(GEPRIS)319898210
|c 319898210
|x 2
536 _ _ |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027)
|0 G:(BMBF)01DH16027
|c 01DH16027
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Go, Dongwook
|0 P:(DE-Juel1)178993
|b 1
|u fzj
700 1 _ |a Schmitz, Peter
|0 P:(DE-Juel1)200291
|b 2
|u fzj
700 1 _ |a Saunderson, Tom G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, Hao
|0 P:(DE-Juel1)191483
|b 4
|u fzj
700 1 _ |a Ghabboun, Jamal
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 6
700 1 _ |a Wulfhekel, Wulf
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 8
|u fzj
773 _ _ |a 10.1103/PhysRevResearch.6.013095
|g Vol. 6, no. 1, p. 013095
|0 PERI:(DE-600)3004165-X
|n 1
|p 013095
|t Physical review research
|v 6
|y 2024
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/INV_24_JAN_012822-1.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/PhysRevResearch.6.013095.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/PhysRevResearch.6.013095.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/PhysRevResearch.6.013095.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/PhysRevResearch.6.013095.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/PhysRevResearch.6.013095.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/INV_24_JAN_012822-1.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/INV_24_JAN_012822-1.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/INV_24_JAN_012822-1.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/1021989/files/INV_24_JAN_012822-1.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:1021989
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186814
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178993
910 1 _ |a Institute of Physics, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)178993
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)200291
910 1 _ |a Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)200291
910 1 _ |a Institute of Physics, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)191483
910 1 _ |a Department of Physics, Bethlehem University, Bethlehem, Palestine
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130548
910 1 _ |a Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130848
910 1 _ |a Institute of Physics, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-07T08:08:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-07T08:08:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-02-07T08:08:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21