001021990 001__ 1021990 001021990 005__ 20250204113758.0 001021990 0247_ $$2doi$$a10.1103/PhysRevLett.132.056701 001021990 0247_ $$2ISSN$$a0031-9007 001021990 0247_ $$2ISSN$$a1092-0145 001021990 0247_ $$2ISSN$$a1079-7114 001021990 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01129 001021990 0247_ $$2pmid$$a38364129 001021990 0247_ $$2WOS$$aWOS:001262232800001 001021990 037__ $$aFZJ-2024-01129 001021990 082__ $$a530 001021990 1001_ $$0P:(DE-HGF)0$$aZhou, Xiaodong$$b0 001021990 245__ $$aCrystal Thermal Transport in Altermagnetic RuO 2 001021990 260__ $$aCollege Park, Md.$$bAPS$$c2024 001021990 3367_ $$2DRIVER$$aarticle 001021990 3367_ $$2DataCite$$aOutput Types/Journal article 001021990 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707288038_7028 001021990 3367_ $$2BibTeX$$aARTICLE 001021990 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001021990 3367_ $$00$$2EndNote$$aJournal Article 001021990 500__ $$aJoint Sino-German Research Projects (Chinese Grant No. 12061131002 and German Research Foundation, DFG, Grant No. 44880005), the Sino-German Mobility Programme (Grant No. M-0142) and DFG-TRR 288- 422213477 and DFG-TRR 173/2-268565370. 001021990 520__ $$aWe demonstrate the emergence of a pronounced thermal transport in the recently discovered class of magnetic materials—altermagnets. From symmetry arguments and first-principles calculations performed for the showcase altermagnet, RuO2, we uncover that crystal Nernst and crystal thermal Hall effects in this material are very large and strongly anisotropic with respect to the N ́eel vector. We find the large crystal thermal transport to originate from three sources of Berry’s curvature in momentum space: the Weyl fermions due to crossings between well-separated bands, the strong spin-flip pseudonodal surfaces, and the weak spin- flip ladder transitions, defined by transitions among very weakly spin-split states of similar dispersion crossing the Fermi surface. Moreover, we reveal that the anomalous thermal and electrical transport coefficients in RuO2 are linked by an extended Wiedemann-Franz law in a temperature range much wider than expected for conventional magnets. Our results suggest that altermagnets may assume a leading role inrealizing concepts in spin caloritronics not achievable with ferromagnets or antiferromagnets 001021990 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 001021990 536__ $$0G:(GEPRIS)444844585$$aDFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)$$c444844585$$x1 001021990 536__ $$0G:(GEPRIS)437337265$$aDFG project 437337265 - Spin+Optik: Theoretischer Entwurf von antiferromagnetischer Optospintronik (A11) (437337265)$$c437337265$$x2 001021990 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001021990 7001_ $$0P:(DE-HGF)0$$aFeng, Wanxiang$$b1$$eCorresponding author 001021990 7001_ $$0P:(DE-HGF)0$$aZhang, Run-Wu$$b2 001021990 7001_ $$0P:(DE-HGF)0$$aŠmejkal, Libor$$b3 001021990 7001_ $$0P:(DE-HGF)0$$aSinova, Jairo$$b4 001021990 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b5 001021990 7001_ $$0P:(DE-HGF)0$$aYao, Yugui$$b6 001021990 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.132.056701$$gVol. 132, no. 5, p. 056701$$n5$$p056701$$tPhysical review letters$$v132$$x0031-9007$$y2024 001021990 8564_ $$uhttps://juser.fz-juelich.de/record/1021990/files/PhysRevLett.132.056701.pdf$$yOpenAccess 001021990 8564_ $$uhttps://juser.fz-juelich.de/record/1021990/files/PhysRevLett.132.056701.gif?subformat=icon$$xicon$$yOpenAccess 001021990 8564_ $$uhttps://juser.fz-juelich.de/record/1021990/files/PhysRevLett.132.056701.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001021990 8564_ $$uhttps://juser.fz-juelich.de/record/1021990/files/PhysRevLett.132.056701.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001021990 8564_ $$uhttps://juser.fz-juelich.de/record/1021990/files/PhysRevLett.132.056701.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001021990 909CO $$ooai:juser.fz-juelich.de:1021990$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China$$b0 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China$$b0 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China$$b0 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China$$b1 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China$$b1 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China$$b2 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China$$b2 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany$$b3 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic$$b3 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany$$b4 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic$$b4 001021990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b5$$kFZJ 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130848$$a Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany$$b5 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China$$b6 001021990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China$$b6 001021990 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 001021990 9141_ $$y2024 001021990 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21 001021990 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-21 001021990 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 001021990 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21 001021990 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001021990 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-21 001021990 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-21$$wger 001021990 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21 001021990 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21 001021990 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-21 001021990 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-21 001021990 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21 001021990 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21 001021990 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21 001021990 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0 001021990 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1 001021990 980__ $$ajournal 001021990 980__ $$aVDB 001021990 980__ $$aUNRESTRICTED 001021990 980__ $$aI:(DE-Juel1)PGI-1-20110106 001021990 980__ $$aI:(DE-Juel1)IAS-1-20090406 001021990 9801_ $$aFullTexts