001022001 001__ 1022001
001022001 005__ 20240226075419.0
001022001 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01138
001022001 037__ $$aFZJ-2024-01138
001022001 041__ $$aEnglish
001022001 1001_ $$0P:(DE-Juel1)190263$$aDruska, Oskar$$b0
001022001 245__ $$aModifying an existing Convolutional Neural Network to predict Total Intracranial Volume using T1w images$$f - 2023-12-15
001022001 260__ $$c2023
001022001 300__ $$a27 pages
001022001 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
001022001 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
001022001 3367_ $$02$$2EndNote$$aThesis
001022001 3367_ $$2DINI$$aStudyThesis
001022001 3367_ $$2BibTeX$$aMASTERSTHESIS
001022001 3367_ $$0PUB:(DE-HGF)9$$2PUB:(DE-HGF)$$aCoursework$$bcourse$$mcourse$$s1706621162_29122
001022001 502__ $$aCourse work, FH Aachen University of Applied Sciences, 2023$$bCourse work$$cFH Aachen University of Applied Sciences
001022001 520__ $$aNeuroimaging has become an essential part in diagnosing and treating neurological diseases.Statistics such as sex, age, and dexterity can be asked for by medical staff during consultation. Biological markers or medical information such as total intracranial volume (colloq.: brain volume; TIV) or absolute and relative amount of grey/white matter have to be computed by usually timeconsuming calculations.It is of both patient’s and medical staff’s interest to have results as soon as possible after collecting data from magnetic resonsance imaging (MRI), a type of imaging procedure.Machine Learning provides statistical tools to omit classical time-consuming processing and make predictions about those biological markers based on previously analyzed brain images. This allows faster estimates and enables timely discussion and diagnosis with and of the patient after examination.Especially in emergency situations this can provide doctors with required information and allows them to start treatment while the patient is still on-site, if necessary.There have been previous efforts on building a Convolutional Neural Network (CNN) that is able to predict brainage on a given T1-weighted image. T1w images are a type of neuroimaging data.This thesis will describe modifications done to the given CNN ’Simple Fully Convolutional Network’ (SFCN), in order to predict TIV using the same T1w image of the brain as input.It will furhter explain various Machine Learning concepts and the SFCN’s implementation as well as the training and evaluation functions used as the foundation for this appliance.This modification is done by linear scaling the given TIV values used for back- propagation into the space the SFCN has previously been trained and applied on, in this case the age range of [42, 82]. This has been implemented into the code of SFCN.After modifying, the model has been trained for 10 epochs using 1370 T1w brain images provided by the Amsterdam Open MRI Collection (AOMIC)Using the Kullback-Leibler divergence as a measure of loss, the model shows a training loss of 2.46 after 1 epoch and 1.98 after 10 epochs.Its validation loss initially starts at 3.4 while ending at 3.45 after 10 epochs. The validation loss is minimal after 2 epochs with a KL-divergence of 2.7.
001022001 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001022001 65027 $$0V:(DE-MLZ)SciArea-190$$2V:(DE-HGF)$$aMedicine$$x0
001022001 7001_ $$0P:(DE-Juel1)164524$$aKadelka, Tobias$$b1$$eCorresponding author
001022001 7001_ $$0P:(DE-Juel1)177088$$aWaite, Alexander$$b2$$eThesis advisor
001022001 7001_ $$0P:(DE-HGF)0$$aProf. Dr. rer. nat. Grajewski, Matthias$$b3$$eReviewer
001022001 8564_ $$uhttps://juser.fz-juelich.de/record/1022001/files/T1w_TIV_coursework_FHAachen_DruskaOskar_2023.pdf$$yOpenAccess
001022001 8564_ $$uhttps://juser.fz-juelich.de/record/1022001/files/T1w_TIV_coursework_FHAachen_DruskaOskar_2023.gif?subformat=icon$$xicon$$yOpenAccess
001022001 8564_ $$uhttps://juser.fz-juelich.de/record/1022001/files/T1w_TIV_coursework_FHAachen_DruskaOskar_2023.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001022001 8564_ $$uhttps://juser.fz-juelich.de/record/1022001/files/T1w_TIV_coursework_FHAachen_DruskaOskar_2023.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001022001 8564_ $$uhttps://juser.fz-juelich.de/record/1022001/files/T1w_TIV_coursework_FHAachen_DruskaOskar_2023.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001022001 909CO $$ooai:juser.fz-juelich.de:1022001$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001022001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190263$$aForschungszentrum Jülich$$b0$$kFZJ
001022001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164524$$aForschungszentrum Jülich$$b1$$kFZJ
001022001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177088$$aForschungszentrum Jülich$$b2$$kFZJ
001022001 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a FH Aachen University of Applied Sciences$$b3
001022001 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001022001 9141_ $$y2023
001022001 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001022001 920__ $$lyes
001022001 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001022001 980__ $$acourse
001022001 980__ $$aVDB
001022001 980__ $$aUNRESTRICTED
001022001 980__ $$aI:(DE-Juel1)INM-7-20090406
001022001 9801_ $$aFullTexts