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Methods

Introduction

Brain-age prediction (BAP) using structural MRI has shown || * Two-level (LO and L1) SEM. | o
great potential for studying healthy aging and disease. Two *Level 0 - trained a GLMnet model for each parcel. The out-of-sample (OOS, using 3-fold cross-validation).

major desirable properties for BAP are high accuracy and Final_ L(_) models were trained on the whole train datasets | | |
data privacy. We propose a stacking ensemble model || *Predictions from all LO models were used as features to train a GLMnet model at L1. L1 provides the final

(SEM) [1] which takes the advantage of the most age-prediction.
iInformative voxels and improves both properties compared

to current standard implementations [2]. We explored two different ways to train models at LO and L1 and all combinations between them, I.e.,
1) using pooled data from different sites, and
Material i) treating each site separately and then averaging their outcomes.

- T1w MRI scans of healthy subjects from IXI [3], eNKI [4], Addi.tio.nally, to test the case where enough data is available at the test site, we estimated LO-level OOS

CamCAN [5] and 1000Gehirne [6]. predictions on the test data.

(each n>500, total N=3103, 18-90 age range). These were then used to obtain predictions using L1 models.
* Preprocessing. Voxel Based Morphometry CAT 12.8- The former schemes provide different levels and types of privacy advantage.

gray-matter volume (GMV). To compare with current standards we also tested models using average GMV in each parcel as inputs of L1.
* 873-parcel atlas to group GMV voxels Performance was estimated using leave-one-site-out analysis.
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LO regional predlctlons can be
~ projected to brain and provide an \
/ “additional to blologlcal interpretation
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Results & Conclusions

MAE Brain maps
:l_.
| Pearson’sr Pearson’sr
3 mssm mean GMV pooled data Age-regional LO prediction Age- mean regional GMV
5 - | | mean GMV per site across subiects across subjects
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test oos LO&L1:pooled

L0&L1:pooled ‘Improved performance

In all metrics!

Bias Improved data privacy
e * An additional biological
interpretation
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