001022031 001__ 1022031
001022031 005__ 20240131202702.0
001022031 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01168
001022031 037__ $$aFZJ-2024-01168
001022031 041__ $$aEnglish
001022031 1001_ $$0P:(DE-Juel1)187476$$aKuhles, Gianna$$b0$$eCorresponding author
001022031 1112_ $$aEuropean Workshop on Cognitive Neuropsychology$$cBressanone/Brixen$$d2024-01-22 - 2024-01-26$$gEWCN$$wItaly
001022031 245__ $$aPitfalls in using ML to predict executive function performance by linguistic variables
001022031 260__ $$c2024
001022031 3367_ $$033$$2EndNote$$aConference Paper
001022031 3367_ $$2BibTeX$$aINPROCEEDINGS
001022031 3367_ $$2DRIVER$$aconferenceObject
001022031 3367_ $$2ORCID$$aCONFERENCE_POSTER
001022031 3367_ $$2DataCite$$aOutput Types/Conference Poster
001022031 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1706685825_12002$$xAfter Call
001022031 502__ $$cHeinrich-Heine Universität Düsseldorf
001022031 520__ $$aIntroduction: A connection between executive function (EF) performance and prosody was previously found in numerous mental disorders (Filipe et al., 2018; Le et al., 2011; Nevler et al., 2017). However, it is so far unresolved how different subdomains of EF and prosody are related to each other. Thus, the present study strived to explore the relationships of EF and prosody using a machine learning (ML) regression approach aiming to predict EF performance from various prosodic features.Methods: Healthy participants (n = 231) performed several spontaneous speech tasks, as well as commonly used EF tests, spanning different EF subdomains. Prosodic features were extracted automatically from the speech samples. We then used a standard ML approach to predict EF performance from prosody. As is common, we controlled for confounding effects of age, sex, and education Subsequently, the most predictive features for each of the successfully predicted EF variables were identified.Results: Results indicated that spectral prosodic parameters were particularly important for successful prediction, which is in line with previous literature (Le et al., 2011). However, a thorough assessment of the analysis pipeline revealed a leakage of the effects of sex, age, and education into the prediction, basically indicating the prediction performance – at least for some of the variables – was mainly driven by sex, age, and education confounds, rather than our prosody features. While results of ML analyses might appear to fit with previous results, present findings strongly underline the importance of educated control of any ML pipeline. Thus, we suggest running sanity checks for predicting cognitive performance as well as caution with the interpretation of ML prediction results.Discussion:Taking these methodological considerations into account, the outcome of the present study provides insights into the specific relationships between prosody and executive function performance, concurrently warning about possible pitfalls with the use of ML. While our findings are in line with previous studies (Filipe et al., 2018; Le et al., 2011; Nevler et al., 2017), further research should investigate whether the predictive power of prosody can serve as a biomarker of executive dysfunction in the future.
001022031 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001022031 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x1
001022031 7001_ $$0P:(DE-Juel1)172024$$aCamilleri, Julia$$b1
001022031 7001_ $$0P:(DE-Juel1)184874$$aHamdan, Sami$$b2
001022031 7001_ $$0P:(DE-Juel1)131644$$aHeim, Stefan$$b3
001022031 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b4$$ufzj
001022031 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b5
001022031 7001_ $$0P:(DE-Juel1)172811$$aWeis, Susanne$$b6
001022031 8564_ $$uhttps://juser.fz-juelich.de/record/1022031/files/Poster_Kuhles24.pdf$$yOpenAccess
001022031 8564_ $$uhttps://juser.fz-juelich.de/record/1022031/files/Poster_Kuhles24.gif?subformat=icon$$xicon$$yOpenAccess
001022031 8564_ $$uhttps://juser.fz-juelich.de/record/1022031/files/Poster_Kuhles24.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001022031 8564_ $$uhttps://juser.fz-juelich.de/record/1022031/files/Poster_Kuhles24.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001022031 8564_ $$uhttps://juser.fz-juelich.de/record/1022031/files/Poster_Kuhles24.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001022031 909CO $$ooai:juser.fz-juelich.de:1022031$$popenaire$$popen_access$$pVDB$$pdriver
001022031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187476$$aForschungszentrum Jülich$$b0$$kFZJ
001022031 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)187476$$a HHU Düsseldorf$$b0
001022031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172024$$aForschungszentrum Jülich$$b1$$kFZJ
001022031 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172024$$a HHU Düsseldorf$$b1
001022031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184874$$aForschungszentrum Jülich$$b2$$kFZJ
001022031 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)184874$$a HHU Düsseldorf$$b2
001022031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131644$$aForschungszentrum Jülich$$b3$$kFZJ
001022031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ
001022031 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b4
001022031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b5$$kFZJ
001022031 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b5
001022031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172811$$aForschungszentrum Jülich$$b6$$kFZJ
001022031 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172811$$a HHU Düsseldorf$$b6
001022031 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001022031 9141_ $$y2024
001022031 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001022031 920__ $$lyes
001022031 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001022031 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
001022031 980__ $$aposter
001022031 980__ $$aVDB
001022031 980__ $$aUNRESTRICTED
001022031 980__ $$aI:(DE-Juel1)INM-7-20090406
001022031 980__ $$aI:(DE-Juel1)INM-1-20090406
001022031 9801_ $$aFullTexts