001     1022040
005     20240202202648.0
024 7 _ |a 10.1101/2024.01.12.574450
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01177
|2 datacite_doi
037 _ _ |a FZJ-2024-01177
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Jung, Kyesam
|0 P:(DE-Juel1)178611
|b 0
|e First author
245 _ _ |a Simulated brain networks reflecting progression of Parkinson’s disease
260 _ _ |a Cold Spring Harbor
|c 2024
|b Cold Spring Harbor Laboratory, NY
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1706854612_29240
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Neurodegenerative progression of Parkinson’s disease affects brain structure and function and, concomitantly, alters topological properties of brain networks. The network alteration accompanied with motor impairment and duration of the disease is not yet clearly demonstrated in the disease progression. In this study, we aim at resolving this problem with a modeling approach based on large-scale brain networks from cross-sectional MRI data. Optimizing whole-brain simulation models allows us to discover brain networks showing unexplored relationships with clinical variables. We observe that simulated brain networks exhibit significant differences between healthy controls (n=51) and patients with Parkinson’s disease (n=60) and strongly correlate with disease severity and disease duration of the patients. Moreover, the modeling results outperform the empirical brain networks in these clinical measures. Consequently, this study demonstrates that utilizing simulated brain networks provides an enhanced view on network alterations in the progression of motor impairment and potential biomarkers for clinical indices.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
536 _ _ |a VirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421)
|0 G:(EU-Grant)826421
|c 826421
|f H2020-SC1-DTH-2018-1
|x 3
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 4
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 1
700 1 _ |a Caspers, Julian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Popovych, Oleksandr
|0 P:(DE-Juel1)131880
|b 3
|e Corresponding author
773 _ _ |a 10.1101/2024.01.12.574450
|0 PERI:(DE-600)2766415-6
|t bioRxiv beta
|y 2024
856 4 _ |u https://www.biorxiv.org/content/10.1101/2024.01.12.574450v1
856 4 _ |u https://juser.fz-juelich.de/record/1022040/files/Jung-2024-bioRxiv.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022040/files/Jung-2024-bioRxiv.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022040/files/Jung-2024-bioRxiv.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022040/files/Jung-2024-bioRxiv.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022040/files/Jung-2024-bioRxiv.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1022040
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131880
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21