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Abstract 
Neurodegenerative progression of Parkinson’s disease affects brain structure and function and, concomitantly, alters 

topological properties of brain networks. The network alteration accompanied with motor impairment and duration of 

the disease is not yet clearly demonstrated in the disease progression. In this study, we aim at resolving this problem with 

a modeling approach based on large-scale brain networks from cross-sectional MRI data. Optimizing whole-brain 

simulation models allows us to discover brain networks showing unexplored relationships with clinical variables. We 

observe that simulated brain networks exhibit significant differences between healthy controls (n=51) and patients with 

Parkinson’s disease (n=60) and strongly correlate with disease severity and disease duration of the patients. Moreover, 

the modeling results outperform the empirical brain networks in these clinical measures. Consequently, this study 

demonstrates that utilizing simulated brain networks provides an enhanced view on network alterations in the 

progression of motor impairment and potential biomarkers for clinical indices. 

 

Introduction 
Parkinson’s disease (PD) is associated with degeneration of dopaminergic neurons in the substantia nigra pars 

compacta1. This dopamine deficiency involved in basal ganglia circuits leads to movement disorder2. As a 

neurodegenerative disease, PD progresses over time. Evidently, the disease duration is associated with severity of motor 

impairment3. Accordingly, taking care of the symptom severity after the disease onset is crucial to quality of patients’ 

life. Medication with levodopa or dopaminergic therapy is an effective treatment of PD without diminished effects in a 

long disease duration of decades4,5. However, with such a long-time neurologic state before and after the diagnosis, it 

may cause corresponding irreversible brain network alteration6,7 as well as drug-induced dyskinesia8 or cognitive 

deficits9. These degenerative alterations are important for understanding the progression of the disease in pre-motor or 

prodromal periods (before the disease onset), which is one of clinical challenges. 

Investigating the changes of brain networks with the disease development can help to understand its pathological 

progress. Eventually, these changes do not only impact whole-brain networks, but also correspondingly alter their 

topological properties of the networks. Network representation of the human brain, also known as human connectome10, 

has widely been employed in neuroscientific research for understanding the neural coding and information transmission 

via brain circuits11. Human connectome comprises various network models12, and graph theory provides effective tools 

to evaluate properties of such complex networks from large-scale brain connectivity13. Many studies have addressed the 

relationships between network properties and behavior14 including diseased states15-17. In other words, the network-based 

approach provides features reflecting psychological and clinical attributes18. In particular, brain networks of PD patients 

have been shown to be different from those of healthy participants in network integration and segregation19,20. Besides, it 

can also be employed for patient classification21-23. 

Examining the network alterations through experimental interventions for in vivo human brain is hardly feasible. 

On the other hand, in silico brain networks derived by whole-brain modeling have no limitation in virtual interventions 

for instance virtual corpus callosotomy24. In this study we therefore suggest an approach that utilizes whole-brain 

dynamical models and resultant simulated brain networks for enhanced relationship of them with clinical variables. With 

this, we probe simulated network properties by varying model parameters and search for optimal values that provide the 

best simulation model correspondence to research objectives22. This behavioral network-based model fitting is a novel 

approach to investigate the relationships between simulated network properties and clinical measures. It allows us to 

explore in silico brain dynamics for study conditions that are not available for the analysis of empirical human data in 

vivo. 

Here we test the relationship between simulated brain networks and clinical scores related with the progression 

of PD, i.e., disease severity and disease duration. For the severity, we utilize the unified Parkinson’s disease rating scale 

(UPDRS)25 in the modeling approach. It is also used to infer the effect of medication (dopaminergic therapy) on motor 

impairment with the extent of striatal dopamine depletion7. Accordingly, we demonstrate an important and intriguing 

dependence of the modeling results on clinical variables by applying the behavioral network-based model fitting. We in 
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particular opt for network modularity (segregation) and efficiency (integration) and address the relationship between the 

network properties and clinical variables of PD (Fig. 1). As a result, we demonstrate significant differences of the 

simulated network properties between PD patients and healthy controls as well as correlations with disease severity and 

duration, which were found to be unclear in empirical brain networks. Our results therefore reveal that simulated brain 

networks clearly reflect the clinical properties of the disease, and the suggested model-fitting approach contributes to 

investigation and better understanding the disease progression. In consequence, it will possibly provide a new observer-

independent biomarker for disease progression. 

 

Results 
Relationships between clinical variables. 

We calculated Pearson’s correlation coefficients between clinical and demographic variables. Severity of motor 

impairment based on the UPDRS III scores does not significantly correlate with age, disease onset age, and disease 

duration in the considered cross-sectional data (Table 1). We observed a weak positive correlation between UPDRS III 

Off (condition without medication) and disease duration. This tendency is consistent with an increase of UPDRS III Off 

with disease duration in a longitudinal study3. Instead, UPDRS III Off and UPDRS III On (condition with medication) 

strongly correlate with each other. As for the effect of medication, the within-subject difference of UPDRS III (Off – On) 

shows significant correlations with the onset age and the duration of the disease, but it is not the case for age. For a 

progressive disease, the disease duration is obviously a more important factor to delve into the effect of medication 

compared to age. 

 
Table 1 Demography and relationship among clinical variables. 

Groups Female Male Age Onset age Disease duration UPDRS III Off UPDRS III On UPDRS III Off – UPDRS III On 

Controls 21 30 55.02 (9.78) N/A N/A N/A N/A N/A 

Patients 17 43 61.95 (9.32) 53.22 (9.30) 8.65 (5.21) 35 (26-40) 17.5 (11-28) 13.5 (7-18) 

Variables (60 patients)  Onset age Disease duration UPDRS III Off UPDRS III On UPDRS III Off – UPDRS III On 

Age  0.835** 0.291* 0.024 0.101 -0.109 

Onset age  - -0.284* -0.080 0.189 -0.366** 

Disease duration  - - 0.180 -0.152 0.446** 

UPDRS III Off   - - - 0.726** 0.300* 

UPDRS III On  - - - - -0.438** 
In the demography, values of ages (age, onset age, and disease duration) are in years, and values with the parentheses indicate mean (standard deviation). 
Values of UPDRS III with the parentheses indicate median (interquartile range). 
In the relationship, values are Pearson’s correlation coefficients (n = 60) denoted by asterisks (*p < 0.05 and ** p < 0.005) as significant relationship. 

Abbreviations: unified Parkinson’s disease rating scale (UPDRS); not available (N/A). 

 

Whole-brain model fitting using network landscapes. 

We calculated network modularity and efficiency of the simulated functional connectivity (FC) and projected them on a 

parameter space that comprises model parameters of global couplings and delays (Fig. 1a). Each subject therefore has 

landscapes of network modularity and efficiency. By the group-level (across subjects) statistical analyses (Fig. 1b) we 

obtained the respective statistical parameter maps (Fig. 2). The latter in particular include parameter regimes showing 

significant results and relatively large inter-subject variability of network properties for robust performance against noise 

(Suppl. Fig. 1a-b). The intersections of these regimes were used for the behavioral network-based model fitting as a 

parameter mask (Suppl. Fig. 1c). Then, we searched for the optimal parameter points (the magenta-white squares in Fig. 

2) corresponding to the largest effect size of group difference between healthy controls and patients (Fig. 2a-b) and the 

strongest positive or negative Pearson’s correlation coefficients between the network properties and UPDRS III On 

scores (Fig. 2c-e). The optimal global delays were located in the interval [0.06, 0.25] s/m of biologically feasible signal 

propagation delays26 (squares between vertical lines in Fig. 2). We further clarified reliability of the model fitting via 

cross-validated model fitting22. As a result, the selected parameter points (squares in Fig. 2c-e) were stable across 

different subject configurations by random sampling (Suppl. Fig. 2). 

Landscape of the group difference shows that network modularity of PD patients is mostly higher than that of 

controls (Fig. 2a). In contrast, network efficiency of the patients is lower than that of the controls (Fig. 2b). The landscape 

of the correlations between the network modularity and the disease severity mostly shows positive correlations (Fig. 2c). 

Remarkably, the network efficiency of simulated FC alters a lot by varying the model parameters on the landscape 

leading to positive and negative correlations (Fig. 2d-e). With these landscape patterns, switching the optimal parameters 

from small to large delays impacts brain dynamics leading to opposite tendencies of correlations. Therefore, we inferred 

that simulated functional networks of patients may comparatively change when model parameters are varied, and 

simultaneously, the changes of the network property can be related with the severity of the disease. 

 

Group difference of network properties. 
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We also calculated network properties of the empirical connectomes, i.e., FC and structural connectivity (SC), and 

compared the network properties of healthy controls with those of patients. We find no significant group differences in 

the empirical data (Fig. 3a-b). In contrast, the network properties of the simulated FCs obtained for the optimal model 

parameters (squares in Fig. 2a-b) show significantly different distributions between the controls and the patients. The 

modularity of patients is higher, and the efficiency is lower than those of healthy controls for both parcellations (Fig. 3c), 

which is consistent with the tendency reported in the literature for empirical neuroimaging data20. Based on these 

findings, we conclude that the modeling results are different for healthy controls and PD patients. As a consequence, 

segregation (modularity) and integration (efficiency) of simulated functional networks can be engaged in the relationship 

with clinical variables of PD, which we consider in detail below. 

 

Simulated network property reflects severity of the disease. 

We calculated Pearson’s correlation coefficients between the network properties (modularity and efficiency) and the 

disease severity (UPDRS III On). The network properties of empirical FC and SC do not show significant correlation 

with disease severity (Fig. 4a-d, Table 2). On the other hand, the network properties of simulated FC obtained from the 

model simulations with the optimal parameters (squares in Fig. 2c-e) significantly correlate with the disease severity (Fig. 

4e-g). Interestingly, the simulated network efficiency clearly shows opposite tendencies, i.e., positive and negative 

correlations with the disease severity (Fig. 4f-g). In the network topology of whole-brain connectivity13, high segregation 

(modularity) corresponds to the presence of segregated (weakly interacting) network modules of densely interconnected 

nodes (brain regions) within modules. On the other hand, high integration (efficiency) is related with strong connections 

also between modules. Therefore, with the above results, we arrived at an assertion that the network-based modeling 

discloses the severity of motor impairment of PD patients via probing into the segregation and integration of simulated 

brain networks. 

 
Table 2 Correlation between empirical network properties and clinical variables (60 patients). 

Empirical functional connectivity Age Onset age Disease duration UPDRS III Off UPDRS III On UPDRS III Off – UPDRS III On 

Modularity (Schaefer) -0.047 -0.143 0.166 -0.144 -0.172 0.050 

Modularity (Desikan-Killiany) -0.346* -0.293* -0.094 -0.072 -0.133 0.090 

Efficiency (Schaefer) 0.287* 0.332* -0.078 -0.023 0.095 -0.162 

Efficiency (Desikan-Killiany) 0.358** 0.377** -0.032 -0.014 0.080 -0.129 

Empirical structural connectivity Age Onset age Disease duration UPDRS III Off UPDRS III On UPDRS III Off – UPDRS III On 

Modularity (Schaefer) 0.230* 0.063 0.291* 0.159 0.183 -0.046 

Modularity (Desikan-Killiany) 0.246 0.068 0.310* 0.170 0.186 -0.036 

Efficiency (Schaefer) -0.209 -0.054 -0.270* -0.219 -0.204 -0.003 

Efficiency (Desikan-Killiany) -0.073 0.018 -0.158 -0.206 -0.149 -0.064 
In the relationship, values are Pearson’s correlation coefficients (n = 60) denoted by asterisks (*p < 0.05 and ** p < 0.005) as significant relationship. 
Abbreviations: unified Parkinson’s disease rating scale (UPDRS). 

 

To investigate the changes of the simulated brain network topology, we in detail analyzed connections (network 

edges) of simulated FC across the patients. To do this, we considered the optimal models corresponding to the strongest 

negative and positive correlations of the network efficiency with the disease severity (squares in Fig. 2d-e). In the case of 

small delay (negative correlation), many inter-hemispheric connections significantly correlate with the disease severity as 

compared with the intra-hemispheric connections (lower triangles in Fig. 5a-b). On the other hand, in the case of large 

delay (positive correlation), many intra-hemispheric connections significantly correlate with the disease severity (upper 

triangles in Fig. 5a-b). Based on this result, we opted for the significant edges of the simulated FC from the small delays 

as edges of interest (non-white edges in lower triangles in Fig. 5a-b) for further analysis. Thereafter, we subtracted the 

selected FC edges of small delay from the corresponding FC edges of large delay for every subject and related these edge 

differences to the disease severity of a given subject. As a result, we can clearly see that the individual histograms of the 

edge differences are away from zero when the patients have less severe motor impairment and approach the origin when 

the severity increases (Fig. 5c-d). Accordingly, the medians of the edge differences exhibit the same behavior and 

significantly correlate with the disease severity (Fig. 5e). Consequently, changes of the corresponding network efficiency 

also significantly correlate with the disease severity (Fig. 5f). Furthermore, the network efficiency of healthy controls 

significantly and strongly deviates from zero as a possible limiting case of zero disease severity (left most boxplots in 

Fig. 5f). Thus, our results attest that simulated brain networks of patients with severe symptoms show less changes in the 

network integration respecting to the network alterations of the models with distinct optimal parameter points. 

 

Effect of medication and network efficiency relative to disease duration. 

The severity of motor impairment varies across patients in the considered cohort, and UPDRS III Off scores are higher 

than UPDRS III On scores (Suppl. Fig. 3a). The difference between the scores (Off – On) can be considered as an effect 

of medication on the symptoms, which exhibits significant correlation with the disease duration (Table 1, Suppl. Fig. 3b). 
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Empirical FC network properties do not show significant correlation with the disease duration, but those of empirical SC 

network are significantly correlated with disease duration (Table 2). To evaluate the impact of the disease duration on the 

simulated FC network, we applied the behavioral network-based model fitting to the disease duration instead of the 

disease severity (Suppl. Fig. 4a-b). Network modularity of simulated FC for the optimal parameter points demonstrates 

positive correlations with the disease duration, which is consistent with the case of empirical SC network (Table 2). 

Interestingly, we found parameter regimes of negative and positive correlations of the network properties with the 

disease duration (Fig. 6a), where the landscapes of the correlations of the network efficiency with the disease severity 

show similar patterns with each other (Suppl. Fig. 4b, compare to Fig. 2d-e). This is in spite of a weak negative 

correlation between the disease duration and severity (UPDRS III On) in clinical measures (Table 1). For the alterations 

of network efficiency between negative and positive correlations (Fig. 6b-c), we calculated a ratio of the network 

efficiency of large delay to that of small delay and related it to the disease duration (Fig. 6d). The network efficiency 

appeared to be smaller for the case of large delay when the patient has a relatively short disease duration. Accordingly, 

the ratio, an alteration of network efficiency, significantly correlates with disease duration (Fig. 6d-e). 

 

Discussion 
The aim of the current study was to demonstrate the relationship between simulated brain network properties and clinical 

variables considering the progression of PD, such as severity of motor impairment and disease duration. The reported 

results indicate that functional segregation and integration of simulated brain networks can significantly correlate with 

disease severity (UPDRS III). In addition, the simulated network properties provide higher effect sizes of the group 

difference between healthy controls and PD patients than those of empirical networks. Remarkably, alterations of 

efficiencies of simulated brain networks derived by the models with distinct optimal parameters evidently reflect the 

clinical measures (the severity and duration of the disease). As a potential approach, the behavioral network-based model 

fitting allows us to explore simulated brain networks that reflect the progression of the disease. Consequently, we suggest 

a way how to generate and utilize simulated human connectomes for investigation of behavioral or clinical measures as 

well as disease onset and progression. 

The results of the current study indicate that simulated data of whole-brain dynamical models can provide 

features of brain networks with a great potential for enhancing group differences between healthy controls and patients 

with PD. Furthermore, the simulated brain networks clearly reflect clinical scores such as disease severity and duration. 

Based on the modeling results, the simulated brain networks outperform the empirical networks in regard to group 

differences and correlations with clinical variables. In contrast, empirical FC did not exhibit such clear relationships of 

the modeling, and empirical SC only showed significant correlation with disease duration (Table 2). Thus, the whole-

brain modeling is essential to reveal relationships between brain networks and clinical measures. In contrast to using 

empirical brain networks, the data-driven modeling approach27 allows us to explore model parameters and search for the 

most effective models that simulate brain dynamics at the best correspondence to the posed research questions.  

The simulation results for the functional integration (network efficiency) are more involved with the disease 

severity than that of the functional segregation (network modularity) because the network efficiency does not only show 

negative correlations (Fig. 4f) but also have positive correlations (Fig. 4g) with disease severity. In addition, it exhibits 

regimes that are associated with alteration of the inter-hemispheric connections in simulated brain networks. In other 

words, inter-hemispheric connections in the brain of the patients with severe motor impairment are not adequately 

contributing to whole-brain dynamics. This interpretation refers to the literature addressed that the inter-hemispheric 

connections are related with the functional integration28. Besides, decreased inter-hemispheric connections in PD were 

also observed in the empirical SC in the current study as well (Suppl. Fig. 5). This is consistent with the empirical result 

of decreased resting-state inter-hemispheric connections in PD29. 

The severity of motor impairment of PD is expected to increase over time3 because of the progressive disease. 

Although we observe a week correlation between the severity and duration of the disease in these cross-sectional clinical 

scores (Table 1), instead we interpret our last modeling results (Figs. 5 and 6) as the impact of the disease progression on 

the simulated network efficiency, which reflects the disease severity and duration. In addition, the positive correlation 

between the difference of UPDRS III scores (Off – On) and the disease duration (Suppl. Fig. 3b) allows us to interpret 

the effect of medication as being related with the disease duration9. With this, we infer that the alteration of the simulated 

network efficiency can intermediate the relationship of the disease duration with the effect of medication. Therefore, the 

simulation outcomes of the dynamical models can be used to integrate the relationships among the disease progression 

(disease severity and duration) and the effect of medication via interrelating them with topological properties of 

simulated brain networks (see Fig. 1c). In summary, our results support the claim that the whole-brain dynamical 

modeling can provide a potential way for understanding the interrelations between the properties of brain networks and 

PD progression and severity. 
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One of the main advances of the current novel approach is that the calculated parameter landscapes of simulated 

network properties provide statistical maps and bases for the behavioral model fitting. Subsequently, significant regimes 

in a landscape can be selected for the best correspondence to target variables as for research questions. This analysis has 

some analogy with statistical brain mapping in neuroimaging research related with behavioral tasks30, clinical tests31, 

genetic measures32, and so forth. Therefore, we can also apply this approach to the parameter landscapes (mapping) of 

the simulated brain dynamics that can be related with behavioral and clinical measures as we demonstrated in this study.  

The modeling and validation methods employed in this study rely on empirical SC and clinical variables, instead 

of empirical FC as a target variable. This may have a few advantages including a possible positive influence on reliability 

of simulation results. Indeed, empirical FC and SC have different test-retest reliabilities, where the empirical resting-state 

FC showed reliability in the range from 0.3 to 0.6 (multi-sites with various scan times)33-35 in intraclass correlation 

coefficient (ICC). On the other hand, ICC values of empirical SC were found between 0.7 and 0.8 (intra-site, inter-site, 

and multi-sites)36,37. Accordingly, network properties of empirical SC also showed a higher reliability than that of 

empirical resting-state FC38. With such different reliabilities, the current modeling approach could also show varied 

results when we use different study conditions. Therefore, we applied a cross-validated model fitting approach22 to the 

landscapes of correlations between simulated network efficiency and disease severity. As a result, it shows stable optimal 

model parameter points across different patient configurations by random sampling (Suppl. Fig. 2). Therefore, the 

suggested behavioral network-based model fitting may show consistent outcomes when we include unseen subjects into 

the analysis. 

The current whole-brain model considers the excitatory and inhibitory populations in each brain region and 

(local and global) interactions among them which represents neurophysiological activities in coupled cortical columns39. 

However, the current model is still relatively simple compared to the network from such a complex human brain. Thus, it 

is necessary to investigate individualized whole-brain models with varied local parameters instead of fixed values such as 

excitatory-inhibitory balances in the future study. For generalized modeling, the current approach needs to be evaluated 

by including multi-site data. 

Investigating alterations of the brain connectome is essential for understanding progression of neurodegenerative 

diseases. Respectively, our findings can be utilized for future research that can show the impact of the disease duration on 

the whole-brain dynamics. Furthermore, including prodromal subjects and longitudinal data will provide a way of the 

validation of the current approach as progressive markers. Therefore, future investigations about the impact of the 

progression of PD on disease symptoms and brain networks will use longitudinal data that consists of healthy, 

prodromal, and diseased subjects from multi-clinical sites. For an advanced approach, we can consider individualized 

whole-brain models with varied local parameters using high-dimensional parameter optimization40 and its applications, 

for instance, a computational biomarker for individual clinical scores. As a consequence, the modeling outcome can be 

used for objective evaluations of these clinical indices. 

 

Methods 
Participants. 

Multimodal brain MRI data were acquired in 111 human subjects including 51 healthy subjects (21 females; age range: 

41-78 years) and 60 patients (17 females; age range: 44-80 years) with Parkinson's disease (PD). Age of symptom onset 

as well as disease duration were acquired in PD patients. Furthermore, the unified Parkinson's disease rating scales 

(UPDRS)25 was assessed by an expert neurologist for each patient in a condition under regular medication (UPDRS-On) 

as well as after at least 12 hours withdrawal of all dopaminergic drugs (UPDRS-Off). All healthy controls had no history 

of any neurologic or psychiatric disease and no abnormalities of cranial MRI. The study was approved by the local ethics 

committee and performed in accordance with the Declaration of Helsinki. Written informed consent was obtained prior 

to study inclusion. 

 

MRI protocols and processing. 

A 3T scanner (Siemens Trio) was used for T1-weighted MRI (T1w; voxel size = 1.0×1.0×1.1 mm3), diffusion-weighted 

MRI (dwMRI; B = 1000 s/mm2 with 64 directions; voxel size = 2.4×2.4×2.4 mm3) with a non-weighted (B0) image, and 

resting-state functional MRI (rs-fMRI; repetition time = 2.21 s; 300 volumes during 663 s; voxel size = 

3.125×3.125×3.565 mm3). MRI processing was performed using a pipeline that included structural and functional 

modules. The structural module performed preprocessing for T1w (bias-field correction; alignment of anterior-posterior 

commissures; brain tissue segmentation; reconstruction of gray-white matter boundary and pial surface) and dwMRI 

(removing the Gibbs ringing effect; correction of bias-field, head-motion, and eddy distortion). Subsequently, whole-

brain tractography (WBT) with 10 million streamlines was calculated based on estimated fiber orientation distributions 

of white matter using spherical deconvolution41,42. The functional module processed rs-fMRI (correction of slice-time 
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and head-motion; re-slicing in a 2 mm iso-cubic voxel space; intensity normalization; de-trending; nuisance regression 

with regressors of white matter, cerebrospinal fluid, the entire brain, and the head motion). Two brain atlases were used 

for cortical parcellation based on the Schaefer43 atlas with 100 parcels and Desikan-Killiany44 atlas with 68 parcels. 

Subcortical regions were also added into each atlas. The pipeline counted streamlines in WBT connecting any two brain 

regions, which shaped SC. It also extracted mean blood oxygenation level-dependent (BOLD) signals of each brain 

region from the processed rs-fMRI and calculated the Pearson’s correlation coefficients between the BOLD signals of 

any two brain regions, which constitutes FC. More details of the MRI processing and tracking parameters can be found 

elsewhere22. 

 

Empirical network properties. 

For the empirical functional network properties, we took absolute values of edges in empirical FC and used the brain 

connectivity toolbox to calculate network modularity and global efficiency13. For the empirical structural network 

properties, streamline counts of edges in empirical SC were divided by the maximal number of streamlines (self-

connections were excluded) and used for the network properties as well. 

 

Neural mass model of two neural populations. 

Post-synaptic potentials (PSP) were simulated via interacting between excitatory and inhibitory neural populations in 

each brain region based on Jansen-Rit model type39,45 as a convolution-based neural mass model46 transforming the 

average of pre-synaptic firing density into the average PSP between excitatory neural populations in brain regions. 

Simulated PSP signals were obtained by using the following differential equations: 

 �̇�𝑛,𝑒(𝑡) = 𝑧𝑛,𝑒(𝑡), (1) 

 �̇�𝑛,𝑖(𝑡) = 𝑧𝑛,𝑖(𝑡), (2) 

 �̇�𝑛,𝑒(𝑡) = 𝑃𝑛,𝑒(𝑡) − 2𝑎𝑅𝑧𝑛,𝑒(𝑡) − 𝑎2𝑅2𝑦𝑛,𝑒(𝑡) + 𝜂𝑛,𝑒, (3) 

 �̇�𝑛,𝑖(𝑡) = 𝑃𝑛,𝑖(𝑡) − 2𝑏𝑅𝑧𝑛,𝑖(𝑡) − 𝑏2𝑅2𝑦𝑛,𝑖(𝑡) + 𝜂𝑛,𝑖, (4) 

 𝑛 = 1,2,⋯ ,𝑁. 

Here, 𝑦𝑛,𝑒, 𝑦𝑛,𝑖, 𝑧𝑛,𝑒, and 𝑧𝑛,𝑖  are excitatory and inhibitory PSPs, and excitatory and inhibitory post-synaptic current 

(PSC), respectively in the 𝑛th brain region out of 𝑁 brain regions depending on parcellation granularity. The subscripts 𝑒 

and 𝑖 of the variables indicate excitatory and inhibitory populations, respectively. Parameters 𝑎 and 𝑏 are the reciprocal 

of the time constants of the PSP kernel for the excitatory and inhibitory populations. A random uniform distribution was 

used for independent noise 𝜂, and 𝑅 scaled the spectral power distribution of the PSP signals. 

The models of different brain regions were coupled through the excitatory populations, where the empirical 

structural connectome was employed to calculate the coupling strengths and delays forming a network backbone of the 

whole-brain model. The intra- and inter-region coupling is included in the terms 𝑃𝑛,𝑒 and 𝑃𝑛,𝑖 serving as inputs to the 

excitatory and inhibitory populations in region 𝑛, respectively, and had the following form: 

 𝑃𝑛,𝑒(𝑡) = 𝐴𝑎𝑅2𝜎𝑒 (
𝐶

𝑁
∑ 𝐶𝑛𝑚𝑦𝑚,𝑒(𝑡 − 𝜏𝑛𝑚) − 𝐶𝑒𝑖𝑦𝑛,𝑖(𝑡)
𝑁
𝑚≠𝑛 ), (5) 

 𝑃𝑛,𝑖(𝑡) = 𝐵𝑏𝑅2𝜎𝑖(𝐶𝑖𝑒𝑦𝑛,𝑒(𝑡)). (6) 

Parameters 𝐴 and 𝐵 are the maximal amplitudes of the excitatory and inhibitory PSP kernels. The inter-regional 

coupling strength and its delay from region 𝑚 to region 𝑛 (𝐶𝑛𝑚 and 𝜏𝑛𝑚) can be estimated using the empirical structural 

connectome 

 𝐶𝑛𝑚 =
𝑤𝑛𝑚

〈𝑊〉
, (7) 

 𝜏𝑛𝑚 = 𝜏𝐿𝑛𝑚, (8) 

where 𝑤𝑛𝑚 and 𝐿𝑛𝑚 are the number and the average path-length of streamlines, respectively, between region 𝑚 and 

region 𝑛, where the former was normalized by the averaged number of streamlines of the structural connectome 〈𝑊〉. 
Parameters of the global coupling 𝐶 (arbitrary unit) and global delay 𝜏 (s/m) were to scale couplings and delays 

throughout the whole-brain network. The coupling weights 𝐶𝑖𝑒 and 𝐶𝑒𝑖 are balancing the interactions from excitatory to 

inhibitory populations and vice versa. The inter- and intra-region coupling involved an averaged firing density calculated 

by the following sigmoid functions: 

 𝜎𝑒(𝑣) =
𝐹𝑒

1−𝑒𝑟(𝑣0−𝑣)
 and 𝜎𝑖(𝑣) =

𝐹𝑖

1−𝑒𝑟(𝑣0−𝑣)
. (9) 
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Here, 𝑟 is a slope of the sigmoid function, 𝑣0 is a half of the maximal membrane potentials. 𝐹𝑒 and 𝐹𝑖 are the maximal 

firing densities of the excitatory and inhibitory populations. The simulated excitatory PSP signals were applied to the 

neurovascular coupling and the hemodynamic function as described by the Balloon-Windkessel model47,48 that 

converted the simulated electrical neural activity to simulated BOLD signals. More details of the whole-brain model and 

their parameter values can be found elsewhere22,39,49. 

 

Implementation of simulation. 

The whole-brain model (1)-(9) was simulated by a custom-made program written in C++ with integration step of 2 ms 

during 720 s, where the first 57 s were discarded as a transient. The remaining 663 s (the same as the length of empirical 

rs-fMRI) were used for analysis. The simulation was carried out on the high-performance computing cluster50. The 

global coupling and global delay were varied as free model parameters on a dense grid of 64 values of global couplings 

[0, 63] and 43 values of global delays [0, 0.42] leading to 2752 model runs for each subject and parcellation. 

 

Network-based behavioral model fitting. 

Simulated BOLD signals were used to calculate the simulated FC by the pairwise Pearson’s correlation between the 

simulated BOLD signals of the brain regions. For the behavioral network-based model fitting, the graph-theoretical 

network properties (modularity and efficiency)13 of the simulated FC matrices were obtained for each model parameter 

point. To calculate the network properties, we took absolute values of the edges in the simulated FC matrices as for the 

empirical FC and delineated a parameter landscape (64-by-43 grid of model parameter points) using the network 

properties of the 2752 simulated FC. In the end, each subject had two network landscapes: modularity and efficiency for 

every parcellation. With this, group-level analyses and statistical tests were performed for statistical mapping on the 

landscapes across subjects. Under each condition (network property and atlas), parameter points were considered with 

sufficiently high inter-subject variability of the network properties. We therefore qualified the parameter points, where 

the standard deviations across subjects exceeded the third quartile of it over all parameter points (> 75%), which can 

positively contribute to investigation of the inter-individual differences and resistance against noise. Consequently, we 

can search for the optimal model parameters corresponding to the strongest correlation between the network properties 

and clinical scores (severity of the disease and disease duration) and the largest effect size of the group difference 

between healthy controls and PD patients. To see how the optimal parameter points are stable across different groups of 

sampled patients, we performed stratified 3-fold cross-validation for the behavioral network-based model fitting (200 

iterations). Subsequently, Pearson’s correlation coefficients between disease severity and the considered network 

properties were calculated in training and testing steps. 

 

Statistical analysis. 

Effect sizes of group difference between healthy subjects and patients were calculated by the Rosenthal formula51 that 

used a z-statistic utilized to compute p-value of the non-parametric Wilcoxon rank-sum two-tail test (n=111). The 

statistics of the Pearson’s correlation coefficient between network properties and clinical or demographic variables were 

calculated for testing the hypothesis that there is no linear relationship (null hypothesis) between observations (n=60). 

The Benjamini-Hochberg procedure52 was applied for controlling the false discovery rate (FDR) of a family of 

hypothesis tests from the edge-wise statistics that performed multiple times using the Pearson’s correlation (corrected p-

values). The random-field theory53 for multiple tests was applied to statistical landscapes, and significant areas were 

thresholded (Z > 3.82 as corrected p < 0.05). The Kolmogorov-Smirnov test54 was used for normality of differences of 

the efficiency in healthy controls (n=51), and one-sample two-tail t-test was applied for testing the null hypothesis (no 

difference from zero) of the distribution. Statistical tests with p < 0.05 were considered as confirming the significance of 

results. The Benjamini-Hochberg FDR procedure was employed in Mass Univariate ERP Toolbox55. All statistical tests 

were performed in MATLAB (R2020b; MathWorks). 

 

Reporting summary. 

Further information on research design is available in the Portfolio Reporting Summary linked to this article. 

 

Data availability 
The clinical data used in this study are not immediately available for public sharing because the given informed consent 

of the patients did not include public sharing. The simulated data that support the findings of this study are available from 

the corresponding author upon a reasonable request. 
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Code availability 
The brain connectivity toolbox is available here (https://sites.google.com/site/bctnet/). The containerized pipeline is 

publicly available (https://jugit.fz-juelich.de/inm7/public/vbc-mri-pipeline). Mass Univariate ERP Toolbox is a public 

software (https://openwetware.org/wiki/Mass_Univariate_ERP_Toolbox). The convolution-based neural mass model is 

also available from the first author upon a reasonable request.  
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Figures 
 

 
Figure 1. Workflow of the study. (a) Individual whole-brain tractography calculated from diffusion-weighted MRI data was used to extract 

parcellation-based empirical structural connectivity (streamline counts and streamline path lengths) that was then utilized for derivation of the whole-

brain dynamical model, simulation of the resting-state brain activity and calculation of simulated functional connectivity for varying model 

parameters. For every subject a few parameter landscapes were obtained representing the properties of the simulated FC networks, e.g., network 

modularity and efficiency versus model parameters. (b) Individual parameter landscapes of network properties were used for group-level analysis to 

obtain parameter landscape of statistics of simulated network properties across subjects, e.g., group differences between patients and healthy controls 

and correlation between disease severity and network properties. (c) The statistical parameter landscapes and results of the behavioral model fitting 

were employed for investigation of the relationships between the simulated network properties and clinical variables, e.g., disease severity and 

duration. 
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Figure 2. Parameter landscapes of behavioral model fitting of the whole-brain dynamical model of the Jansen-Rit type. The network modularity 

(functional segregation) and network efficiency (functional integration) of simulated FC were used to calculate (a-b) landscapes of the effect size of 

the group difference between healthy controls (HC) and patients with Parkinson’s disease (PD) and (c-e) landscapes of Pearson’s correlation (across 

PD patients) between simulated network properties and severity of the disease as given by the unified PD rating scales (UPDRS III medication On). 

The calculations were performed for the Schaefer and the Desikan-Killiany (Desikan) brain atlases indicated in the titles of plots together with the 

respective network properties. The color depicts the effect size and correlation in plots (a-b) and (c-e), respectively. The vertical lines bound an 

approximate range of biologically feasible delays, the magenta-white squares indicate optimal parameter points of the largest effect size or 

correlation in the parameter domain bounded by the black contour curves of intersection between significant areas thresholded by the random-field 

theory for multiple tests and areas of high inter-subject variance of the respective network properties (> third quartile), see the rightmost plot in the 

upper row for explanation.  
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Figure 3. Group difference between healthy controls (HC, n=51) and patients with Parkinson’s disease (PD, n=60) for two brain parcellations and 

several comparison conditions. (a-c) The group differences of the network modularity and efficiency between HC and PD for (a) empirical 

functional connectivity, (b) empirical structural connectivity, and (c) optimal simulated functional connectivity. The empty circles in the plots 

correspond to individual subjects. The brain parcellations are indicated in the plots and the values under the plots are the effect sizes of the group 

difference (positive for HC > PD and negative for PD > HC) and their statistics (p-values of the Wilcoxon rank-sum two-tail test). The p-values with 

asterisks indicate significant results (p < 0.05). The middle thick lines in the interquartile boxes indicate the medians of distributions, and the red 

crosses are outliers.  
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Figure 4. Correlation between severity of the disease of individual PD patients as given by the unified Parkinson’s disease rating scales (UPDRS III 

medication On, horizontal axes) and modularity and efficiency network properties (vertical axes) of empirical and simulated brain connectomes for 

(a-b) empirical FC, (c-d) empirical SC and (e-g) simulated FC calculated for the optimal parameters denoted by the squares in Fig. 2c-e. The 

depicting triangles and squares in the plots denote the two considered brain parcellations correspond to individual PD patients. The used brain 

parcellations, calculated Pearson’s correlation coefficient and its statistical test (p-value) are indicated in the legends.  
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Figure 5. Correlations between disease severity as given by the unified Parkinson’s disease rating scales (UPDRS III, medication On) and simulated 

functional connectivity (FC). The latter was simulated for the optimal model parameters of the strongest positive and negative correlations between 

the disease severity and network efficiency of simulated FC obtained for large and small optimal delays, respectively (Fig. 2d-e, square marks). (a-b) 

Results of statistical tests (p-values corrected by the Benjamini-Hochberg false discovery rate) of Pearson’s correlation (across patients) between the 

disease severity and the edges of the simulated FC for the optimal model parameters of small (lower triangles) and large (upper triangles) delays for 

each parcellation indicated at the left. (c-d) Histograms of the differences of significant FC edges from lower triangles of the corrected p matrices (a-

b) between the large and small optimal delays of each patient and parcellation scheme. The color shading of the histograms indicates the severity of 

the disease of corresponding patients. (e-f) Scatter plots of the relationships between the disease severity and the differences between the values for 

the large and small delays of (e) the medians of the histograms in (c-d) and (f) the network efficiency. The depicting triangles and squares in the plots 

denote the two considered brain parcellations correspond to individual PD patients. The amount of correlation of the depicted relationships are 

indicated in the plots together with the results of its statistical tests (p-values) of Pearson’s correlation for both considered parcellation schemes. In the 

scatter plot (f, left side), the box plots depict the distributions of the respective values of the efficiency differences (vertical axes) for 51 healthy 

controls, where the middle lines in the interquartile boxes indicate the medians of distributions, and the red crosses are outliers. Both distributions 

were normally distributed according to the Kolmogorov-Smirnov normal distribution test and significantly different from zero (one-sample two-tail 

t-test).  
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Figure 6. Relationships between network efficiency of simulated FC and disease duration. (a) Parameter landscape of Pearson’s correlation 

coefficients between simulated network efficiency and the disease duration in the Desikan-Killiany (Desikan) atlas. The vertical lines with ‘small 

delay’ and ‘large delay’ indicate optimal parameter points for negative and positive correlation, respectively. (b-c) Scatter plots for (b) negative and 

(c) positive correlations between disease duration and network efficiency of the simulated FC at the optimal parameter points with small and large 

delay, respectively. The lines are linear fitting between simulated network efficiency and the disease duration. The depicting triangles and squares in 

the plots denote the two considered brain parcellations correspond to individual PD patients. The amount of correlation of the depicted relationships 

are indicated in the plots together with results of statistical tests (p-values) for both considered parcellation schemes. (d) Ratio of the optimal 

simulated network efficiency of large delay to that of small delay for individual patients (vertical axes) sorted according to the ratio of the network 

efficiency indicated by the horizontal bars with color depicting the disease durations of the corresponding patients. The inserts show medians of the 

disease duration corresponding to the moving average along the patients in ascending order of the efficiency ratio. The gray shadow indicates inter-

quartile ranges (IQR) of the disease duration. (e) Bar plots of the median values of the efficiency ratio with error bars indicating IQR of ratios in five 

intervals splitting the range from 0 to 1.25. The amount of correlation of the depicted relationships between the efficiency ratio and the disease 

duration are denoted in the plots together with results of statistical tests (p-values) of the Pearson’s correlation and the Spearman’s correlation, 

respectively. 
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