Home > Publications database > Fast Machine Learning Simulator of At-Sensor Radiances for Solar-Induced Fluorescence Retrieval with DESIS and Hyplant > print |
001 | 1022048 | ||
005 | 20240403082805.0 | ||
024 | 7 | _ | |a 10.1109/IGARSS52108.2023.10281579 |2 doi |
024 | 7 | _ | |a WOS:001098971607156 |2 WOS |
037 | _ | _ | |a FZJ-2024-01185 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Pato, Miguel |0 P:(DE-HGF)0 |b 0 |
111 | 2 | _ | |a IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium |c Pasadena |d 2023-07-16 - 2023-07-21 |w CA |
245 | _ | _ | |a Fast Machine Learning Simulator of At-Sensor Radiances for Solar-Induced Fluorescence Retrieval with DESIS and Hyplant |
260 | _ | _ | |c 2023 |b IEEE |
300 | _ | _ | |a 7563-7566 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1706625116_2473 |2 PUB:(DE-HGF) |
520 | _ | _ | |a In many remote sensing applications the measured radi-ance needs to be corrected for atmospheric effects to studysurface properties such as reflectance, temperature or emis-sion features. The correction often applies radiative transferto simulate atmospheric propagation, a time-consuming stepusually done offline. In principle, an efficient machine learn-ing (ML) model can accelerate the simulation step. This is thegoal pursued here in the context of solar-induced fluorescence(SIF) emitted by vegetation around the O2-A band using thespaceborne DESIS and airborne HyPlant spectrometers. Wepresent an ML simulator of at-sensor radiances trained onsynthetic spectra and describe its performance in detail. Thesimulator is fast and accurate, constituting a promising alter-native to a full-fledged, lengthy radiative transfer code for SIFretrieval in the O2-A band with DESIS and HyPlant.Index Terms— solar-induced fluorescence, hyperspectralsensors, radiative transfer, machine learning |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Alonso, Kevin |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Auer, Stefan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Buffat, Jim |0 P:(DE-Juel1)188104 |b 3 |u fzj |
700 | 1 | _ | |a Carmona, Emiliano |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Maier, Stefan |0 P:(DE-Juel1)188300 |b 5 |u fzj |
700 | 1 | _ | |a Müller, Rupert |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Rademske, Patrick |0 P:(DE-Juel1)162306 |b 7 |u fzj |
700 | 1 | _ | |a Rascher, Uwe |0 P:(DE-Juel1)129388 |b 8 |u fzj |
700 | 1 | _ | |a Scharr, Hanno |0 P:(DE-Juel1)129394 |b 9 |u fzj |
773 | _ | _ | |a 10.1109/IGARSS52108.2023.10281579 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022048/files/Fast_Machine_Learning_Simulator_of_At-Sensor_Radiances_for_Solar-Induced_Fluorescence_Retrieval_with_DESIS_and_Hyplant.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022048/files/Fast_Machine_Learning_Simulator_of_At-Sensor_Radiances_for_Solar-Induced_Fluorescence_Retrieval_with_DESIS_and_Hyplant.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022048/files/Fast_Machine_Learning_Simulator_of_At-Sensor_Radiances_for_Solar-Induced_Fluorescence_Retrieval_with_DESIS_and_Hyplant.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022048/files/Fast_Machine_Learning_Simulator_of_At-Sensor_Radiances_for_Solar-Induced_Fluorescence_Retrieval_with_DESIS_and_Hyplant.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022048/files/Fast_Machine_Learning_Simulator_of_At-Sensor_Radiances_for_Solar-Induced_Fluorescence_Retrieval_with_DESIS_and_Hyplant.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1022048 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)188104 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)188300 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)162306 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)129388 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)129394 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2023 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-8-20210421 |k IAS-8 |l Datenanalyse und Maschinenlernen |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-8-20210421 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|