001     1022060
005     20240226075423.0
024 7 _ |a 10.1101/2023.02.09.527898
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01197
|2 datacite_doi
037 _ _ |a FZJ-2024-01197
100 1 _ |a Gell, Martin
|0 P:(DE-Juel1)185960
|b 0
|e Corresponding author
245 _ _ |a The Burden of Reliability: How Measurement Noise Limits Brain-Behaviour Predictions
260 _ _ |c 2023
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1706685310_11927
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Major efforts in human neuroimaging strive to understand individual differences and find biomarkers for clinical applications by predicting behavioural phenotypes from brain imaging data. An essential prerequisite for identifying generalizable and replicable brain-behaviour prediction models is sufficient measurement reliability. However, the selection of prediction targets is predominantly guided by scientific interest or data availability rather than reliability considerations. Here we demonstrate the impact of low phenotypic reliability on out-of-sample prediction performance. Using simulated and empirical data from the Human Connectome Projects, we found that reliability levels common across many phenotypes can markedly limit the ability to link brain and behaviour. Next, using 5000 subjects from the UK Biobank, we show that only highly reliable data can fully benefit from increasing sample sizes from hundreds to thousands of participants. Overall, our findings highlight the importance of measurement reliability for identifying brain–behaviour associations from individual differences.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 1
700 1 _ |a Omidvarnia, Amir
|0 P:(DE-Juel1)188339
|b 2
700 1 _ |a Küppers, Vincent
|0 P:(DE-Juel1)180212
|b 3
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 4
700 1 _ |a Satterthwaite, Theodore D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller, Veronika
|0 P:(DE-Juel1)131699
|b 6
700 1 _ |a Langner, Robert
|0 P:(DE-Juel1)131693
|b 7
|e Corresponding author
773 _ _ |a 10.1101/2023.02.09.527898
856 4 _ |u https://doi.org/10.1101/2023.02.09.527898
856 4 _ |u https://juser.fz-juelich.de/record/1022060/files/Reliability%20manuscript%20clean.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022060/files/Reliability%20manuscript%20clean.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022060/files/Reliability%20manuscript%20clean.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022060/files/Reliability%20manuscript%20clean.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022060/files/Reliability%20manuscript%20clean.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1022060
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185960
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)185960
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188339
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)188339
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172843
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131699
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)131699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131693
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)131693
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21