Hauptseite > Publikationsdatenbank > Co-simulation: Bridging the Gap between Physicists and Circuit Designers |
Conference Presentation (Invited) | FZJ-2024-01218 |
2024
Abstract: Semiconductor spin qubits are a promising candidate to meet the requirements for universal quantum computing, because they provide the advantage of large-scale 3D integration with industrial CMOS processes. However, inherent non-ideal effects of electronics, such as noise, power consumption and crosstalk affect the qubit fidelity. Moreover, requirements for a minimum qubit fidelity are commonly difficult or impossible to translate to accurate, unambiguous requirements for electronics. Consequently, an environment enabling the co-design of the quantum system together with the integrated electronics and therefore bridging the gap between the physical and electronic domain is essential. We developed a co-simulation methodology in Python that includes an interface to the Cadence Spectre simulator to take the effects of integrated electronics into account. We demonstrate the proposed methodology with a co-optimization loop involving a circuit for the generation of control signals for an electron-shuttling device.
![]() |
The record appears in these collections: |