001022082 001__ 1022082
001022082 005__ 20240226075426.0
001022082 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01219
001022082 037__ $$aFZJ-2024-01219
001022082 041__ $$aEnglish
001022082 1001_ $$0P:(DE-Juel1)188135$$aGrenmyr, Andreas$$b0$$eFirst author
001022082 1112_ $$aInternational conference on neuromorphic, natural and physical computing$$cHannover$$d2023-10-25 - 2023-10-27$$gNNPC$$wGermany
001022082 245__ $$aSynapses with homo/hetero-synaptic plasticity enabled by ferroelectric polarization modulated Schottky diodes
001022082 260__ $$c2023
001022082 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1706699942_5588
001022082 3367_ $$033$$2EndNote$$aConference Paper
001022082 3367_ $$2BibTeX$$aINPROCEEDINGS
001022082 3367_ $$2DRIVER$$aconferenceObject
001022082 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001022082 3367_ $$2ORCID$$aOTHER
001022082 520__ $$aSeveral recently proposed synapses suffer from limited linearity or constrained means of weight adjustment, which can be overcome by incorporating additional modulating terminals. In this study, we explore the use of ferroelectric Schottky transistors (FE-SBFETs) with either a single or dual gate, which exhibit excellent linearity and demonstrate the potential of the second gate terminal for modulation. The incorporation of multiple gates can enable more sophisticated control of the synapse, resulting in greater flexibility for tuning the synaptic weight. The demonstrated high linearity is critical for precise and accurate weight adjustment, as it allows for a larger number of distinguishable conductive states. Therefore, the incorporation of multiple gates and input terminals represents a promising direction for developing more versatile and high-performance neuromorphic devices.
001022082 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001022082 7001_ $$0P:(DE-Juel1)186618$$aZhang, Jiayuan$$b1
001022082 7001_ $$0P:(DE-HGF)0$$aXi, Fengben$$b2
001022082 7001_ $$0P:(DE-Juel1)187229$$aWiefels, Stefan$$b3
001022082 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b4
001022082 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b5
001022082 8564_ $$uhttps://juser.fz-juelich.de/record/1022082/files/Abstract3%20NNPC2_Zhao_Andreas_Final%283%29.docx$$yOpenAccess
001022082 909CO $$ooai:juser.fz-juelich.de:1022082$$pdriver$$pVDB$$popen_access$$popenaire
001022082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188135$$aForschungszentrum Jülich$$b0$$kFZJ
001022082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186618$$aForschungszentrum Jülich$$b1$$kFZJ
001022082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001022082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187229$$aForschungszentrum Jülich$$b3$$kFZJ
001022082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b4$$kFZJ
001022082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b5$$kFZJ
001022082 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001022082 9141_ $$y2023
001022082 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001022082 920__ $$lyes
001022082 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001022082 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x1
001022082 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
001022082 9801_ $$aFullTexts
001022082 980__ $$aabstract
001022082 980__ $$aVDB
001022082 980__ $$aUNRESTRICTED
001022082 980__ $$aI:(DE-Juel1)PGI-9-20110106
001022082 980__ $$aI:(DE-Juel1)PGI-7-20110106
001022082 980__ $$aI:(DE-Juel1)PGI-10-20170113