001022086 001__ 1022086
001022086 005__ 20240226075426.0
001022086 0247_ $$2doi$$a10.1101/2023.02.18.529076
001022086 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01223
001022086 037__ $$aFZJ-2024-01223
001022086 041__ $$aEnglish
001022086 1001_ $$0P:(DE-Juel1)188339$$aOmidvarnia, Amir$$b0$$eCorresponding author
001022086 245__ $$aIs resting state fMRI better than individual characteristics at predicting cognition?
001022086 260__ $$c2023
001022086 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1706682018_12252
001022086 3367_ $$2ORCID$$aWORKING_PAPER
001022086 3367_ $$028$$2EndNote$$aElectronic Article
001022086 3367_ $$2DRIVER$$apreprint
001022086 3367_ $$2BibTeX$$aARTICLE
001022086 3367_ $$2DataCite$$aOutput Types/Working Paper
001022086 520__ $$aResting state fMRI versus confounds for behavioral phenotypic predictionIs resting state fMRI better than individualcharacteristics at predicting cognition?Amir Omidvarnia1,2*, Leonard Sasse1,2, Daouia I. Larabi1,2, FedericoRaimondo1,2, Felix Hoffstaedter1,2, Jan Kasper1,2, Juergen Dukart1,2,Marvin Petersen3, Bastian Cheng3, Götz Thomalla3, Simon B. Eickhoff1,2,Kaustubh R. Patil1,21Institute of Neuroscience and Medicine, Brain & Behavior (INM-7),Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany2Institute of Systems Neuroscience, Medical Faculty, Heinrich HeineUniversity Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany3Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, UniversityMedical Center Hamburg-Eppendorf, Hamburg, Germany*Corresponding author(s). Email(s): a.omidvarnia@fz-juelich.deAbstractChanges in spontaneous brain activity at rest provide rich informationabout behavior and cognition. The mathematical properties of resting-statefunctional magnetic resonance imaging (rsfMRI) are a depiction of brainfunction and are frequently used to predict cognitive phenotypes.Individual characteristics such as age, gender, and total intracranial volume(TIV) play an important role in predictive modeling of rsfMRI (for example,as "confounders" in many cases). It is unclear, however, to what extentrsfMRI carries independent information from the individual characteristicsthat is able to predict cognitive phenotypes. Here, we used predictivemodeling to thoroughly examine the predictability of four cognitivephenotypes in 20,000 healthy UK Biobank subjects. We extracted commonrsfMRI features of functional brain connectivity (FC) and temporalcomplexity (TC). We assessed the ability of these features to predictoutcomes in the presence and absence of age, gender, and TIV. Additionally,we assessed the predictiveness of age, gender, and TIV only. We find TC andFC features to perform comparably with regard to predicting cognitivephenotypes. As compared to rsfMRI features, individual characteristicsprovide systematically better predictions with smaller sample sizes and, tosome extent, in larger cohorts. It is also consistent across different levels ofinherent temporal noise in rsfMRI. Our results suggest that when theobjective is to perform cognitive predictions as opposed to understandingthe relationship between brain and behavior, individual characteristics aremore applicable than rsfMRI features.
001022086 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001022086 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001022086 588__ $$aDataset connected to CrossRef
001022086 7001_ $$0P:(DE-Juel1)190306$$aSasse, Leonard$$b1
001022086 7001_ $$0P:(DE-Juel1)180372$$aLarabi, Daouia I.$$b2
001022086 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b3
001022086 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b4
001022086 7001_ $$0P:(DE-Juel1)184653$$aKasper, Jan$$b5
001022086 7001_ $$0P:(DE-Juel1)177727$$aDukart, Juergen$$b6
001022086 7001_ $$0P:(DE-HGF)0$$aPetersen, Marvin$$b7
001022086 7001_ $$0P:(DE-HGF)0$$aCheng, Bastian$$b8
001022086 7001_ $$0P:(DE-HGF)0$$aThomalla, Götz$$b9
001022086 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b10
001022086 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b11
001022086 773__ $$a10.1101/2023.02.18.529076
001022086 8564_ $$uhttps://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.pdf$$yOpenAccess
001022086 8564_ $$uhttps://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.gif?subformat=icon$$xicon$$yOpenAccess
001022086 8564_ $$uhttps://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001022086 8564_ $$uhttps://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001022086 8564_ $$uhttps://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001022086 909CO $$ooai:juser.fz-juelich.de:1022086$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001022086 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001022086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188339$$aForschungszentrum Jülich$$b0$$kFZJ
001022086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)188339$$aHHU Düsseldorf$$b0
001022086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190306$$aForschungszentrum Jülich$$b1$$kFZJ
001022086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180372$$aForschungszentrum Jülich$$b2$$kFZJ
001022086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b3$$kFZJ
001022086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b4$$kFZJ
001022086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184653$$aForschungszentrum Jülich$$b5$$kFZJ
001022086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177727$$aForschungszentrum Jülich$$b6$$kFZJ
001022086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177727$$aHHU Düsseldorf$$b6
001022086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aKlinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany$$b7
001022086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aKlinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany$$b8
001022086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aKlinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany$$b9
001022086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b10$$kFZJ
001022086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$aHHU Düsseldorf$$b10
001022086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b11$$kFZJ
001022086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$aHHU Düsseldorf$$b11
001022086 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001022086 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001022086 9141_ $$y2023
001022086 920__ $$lyes
001022086 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001022086 980__ $$apreprint
001022086 980__ $$aVDB
001022086 980__ $$aUNRESTRICTED
001022086 980__ $$aI:(DE-Juel1)INM-7-20090406
001022086 9801_ $$aFullTexts