001     1022086
005     20240226075426.0
024 7 _ |2 doi
|a 10.1101/2023.02.18.529076
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2024-01223
037 _ _ |a FZJ-2024-01223
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)188339
|a Omidvarnia, Amir
|b 0
|e Corresponding author
245 _ _ |a Is resting state fMRI better than individual characteristics at predicting cognition?
260 _ _ |c 2023
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1706682018_12252
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a Resting state fMRI versus confounds for behavioral phenotypic predictionIs resting state fMRI better than individualcharacteristics at predicting cognition?Amir Omidvarnia1,2*, Leonard Sasse1,2, Daouia I. Larabi1,2, FedericoRaimondo1,2, Felix Hoffstaedter1,2, Jan Kasper1,2, Juergen Dukart1,2,Marvin Petersen3, Bastian Cheng3, Götz Thomalla3, Simon B. Eickhoff1,2,Kaustubh R. Patil1,21Institute of Neuroscience and Medicine, Brain & Behavior (INM-7),Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany2Institute of Systems Neuroscience, Medical Faculty, Heinrich HeineUniversity Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany3Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, UniversityMedical Center Hamburg-Eppendorf, Hamburg, Germany*Corresponding author(s). Email(s): a.omidvarnia@fz-juelich.deAbstractChanges in spontaneous brain activity at rest provide rich informationabout behavior and cognition. The mathematical properties of resting-statefunctional magnetic resonance imaging (rsfMRI) are a depiction of brainfunction and are frequently used to predict cognitive phenotypes.Individual characteristics such as age, gender, and total intracranial volume(TIV) play an important role in predictive modeling of rsfMRI (for example,as "confounders" in many cases). It is unclear, however, to what extentrsfMRI carries independent information from the individual characteristicsthat is able to predict cognitive phenotypes. Here, we used predictivemodeling to thoroughly examine the predictability of four cognitivephenotypes in 20,000 healthy UK Biobank subjects. We extracted commonrsfMRI features of functional brain connectivity (FC) and temporalcomplexity (TC). We assessed the ability of these features to predictoutcomes in the presence and absence of age, gender, and TIV. Additionally,we assessed the predictiveness of age, gender, and TIV only. We find TC andFC features to perform comparably with regard to predicting cognitivephenotypes. As compared to rsfMRI features, individual characteristicsprovide systematically better predictions with smaller sample sizes and, tosome extent, in larger cohorts. It is also consistent across different levels ofinherent temporal noise in rsfMRI. Our results suggest that when theobjective is to perform cognitive predictions as opposed to understandingthe relationship between brain and behavior, individual characteristics aremore applicable than rsfMRI features.
536 _ _ |0 G:(DE-HGF)POF4-5253
|a 5253 - Neuroimaging (POF4-525)
|c POF4-525
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-5254
|a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)190306
|a Sasse, Leonard
|b 1
700 1 _ |0 P:(DE-Juel1)180372
|a Larabi, Daouia I.
|b 2
700 1 _ |0 P:(DE-Juel1)185083
|a Raimondo, Federico
|b 3
700 1 _ |0 P:(DE-Juel1)131684
|a Hoffstaedter, Felix
|b 4
700 1 _ |0 P:(DE-Juel1)184653
|a Kasper, Jan
|b 5
700 1 _ |0 P:(DE-Juel1)177727
|a Dukart, Juergen
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Petersen, Marvin
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Cheng, Bastian
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Thomalla, Götz
|b 9
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, Simon B.
|b 10
700 1 _ |0 P:(DE-Juel1)172843
|a Patil, Kaustubh R.
|b 11
773 _ _ |a 10.1101/2023.02.18.529076
856 4 _ |u https://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022086/files/2023.02.18.529076v4.full.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1022086
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)188339
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)188339
|a HHU Düsseldorf
|b 0
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)190306
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)180372
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)185083
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131684
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)184653
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177727
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)177727
|a HHU Düsseldorf
|b 6
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
|b 7
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
|b 8
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
|b 9
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131678
|a Forschungszentrum Jülich
|b 10
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)131678
|a HHU Düsseldorf
|b 10
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)172843
|a Forschungszentrum Jülich
|b 11
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)172843
|a HHU Düsseldorf
|b 11
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5253
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 0
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5254
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 1
914 1 _ |y 2023
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21