000010221 001__ 10221
000010221 005__ 20210129210518.0
000010221 0247_ $$2DOI$$a10.1016/j.ijms.2010.03.013
000010221 0247_ $$2WOS$$aWOS:000279462700001
000010221 037__ $$aPreJuSER-10221
000010221 041__ $$aeng
000010221 082__ $$a530
000010221 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000010221 084__ $$2WoS$$aSpectroscopy
000010221 1001_ $$0P:(DE-Juel1)VDB2662$$aBecker, J. S.$$b0$$uFZJ
000010221 245__ $$aScaling down the bioimaging of metals by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS)
000010221 260__ $$a[S.l.]$$bElsevier Science$$c2010
000010221 300__ $$a1 - 6
000010221 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010221 3367_ $$2DataCite$$aOutput Types/Journal article
000010221 3367_ $$00$$2EndNote$$aJournal Article
000010221 3367_ $$2BibTeX$$aARTICLE
000010221 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010221 3367_ $$2DRIVER$$aarticle
000010221 440_0 $$02787$$aInternational Journal of Mass Spectrometry$$v294$$x1387-3806$$y1
000010221 500__ $$aThe authors would like to thank A. Zimmermann (Forschungszentrum Julich) for technical assistance during the LMD-ICP-MS measurements. Bei Wu thanks the Alexander von Humboldt foundation for financially supporting her postdoctoral studies on nano-LA-ICP-MS.
000010221 520__ $$aLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful quantitative elemental imaging technique in routine mode for biological tissue with a spatial resolution of 12-160 mu m. Several applications necessitate an improved spatial resolution of LA-ICP-MS at the low micrometre scale and below. To achieve the improvement of spatial resolution of LA-ICP-MS we created a new experimental arrangement by coupling a laser microdissection system (LMD) used for laser ablation of tissue with a sensitive quadrupole-based inductively coupled plasma mass spectrometer for the subsequent analysis of ablated material. A flat laser ablation chamber made of glass was inserted into the LMD, fitted to the microscope slide with the specimen. The biological tissue fixed on the glass slide was ablated using the focused solid-state Nd:YAG laser of the LMD. The laser ablated material was transported by argon as carrier gas into the inductively coupled plasma of the mass spectrometer and analysed according to the mass-to-charge ratio. Using this novel LMD-ICP-MS arrangement, in initial experiments ion signals of 63Cu* and 65Cte were measured from a 30-p.m-thick cryosection impregnated with a droplet of a Cu solution. A spatial resolution of about 3 pm was obtained using the modified LMD system coupled to the ICP-MS. Laser-induced mass spectrometric measurements of metal distributions can be performed together with simultaneous inspection of the tissue section via the microscope of the LMD and be combined with other modalities of the LMD system. In future, a more powerful laser in the LMD apparatus will allow ablation down to the sub-micrometre scale to study the elemental distribution in small tissue sections. (C) 2010 Elsevier By. All rights reserved.
000010221 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000010221 536__ $$0G:(DE-HGF)POF2-89573$$a89573 - Neuroimaging (POF2-89573)$$cPOF2-89573$$fPOF II T$$x1
000010221 588__ $$aDataset connected to Web of Science
000010221 650_7 $$2WoSType$$aJ
000010221 65320 $$2Author$$aBioimaging
000010221 65320 $$2Author$$aBrain tissue
000010221 65320 $$2Author$$aLaser microdissection
000010221 65320 $$2Author$$aLaser ablation inductively coupled plasma mass spectrometry
000010221 65320 $$2Author$$aMetals
000010221 65320 $$2Author$$aNanometre scale
000010221 7001_ $$0P:(DE-HGF)0$$aNiehren, S.$$b1
000010221 7001_ $$0P:(DE-Juel1)138474$$aMatusch, A.$$b2$$uFZJ
000010221 7001_ $$0P:(DE-HGF)0$$aWu, B.$$b3
000010221 7001_ $$0P:(DE-HGF)0$$aHsieh, H.F.$$b4
000010221 7001_ $$0P:(DE-HGF)0$$aKumtabtim, U.$$b5
000010221 7001_ $$0P:(DE-HGF)0$$aHamester, M.$$b6
000010221 7001_ $$0P:(DE-HGF)0$$aPlaschke-Schlütter, A.$$b7
000010221 7001_ $$0P:(DE-Juel1)VDB64651$$aSalber, D.$$b8$$uFZJ
000010221 773__ $$0PERI:(DE-600)1484635-4$$a10.1016/j.ijms.2010.03.013$$gVol. 294, p. 1 - 6$$p1 - 6$$q294<1 - 6$$tInternational journal of mass spectrometry$$v294$$x1387-3806$$y2010
000010221 8567_ $$uhttp://dx.doi.org/10.1016/j.ijms.2010.03.013
000010221 909CO $$ooai:juser.fz-juelich.de:10221$$pVDB
000010221 9132_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000010221 9131_ $$0G:(DE-HGF)POF2-89573$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vNeuroimaging$$x1
000010221 9141_ $$y2010
000010221 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010221 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000010221 9201_ $$0I:(DE-Juel1)ZCH-20090406$$gZCH$$kZCH$$lZentralabteilung für Chemische Analysen$$x1
000010221 9201_ $$0I:(DE-Juel1)INM-4-20090406$$gINM$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x2
000010221 970__ $$aVDB:(DE-Juel1)120468
000010221 980__ $$aVDB
000010221 980__ $$aConvertedRecord
000010221 980__ $$ajournal
000010221 980__ $$aI:(DE-Juel1)INM-2-20090406
000010221 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000010221 980__ $$aI:(DE-Juel1)INM-4-20090406
000010221 980__ $$aUNRESTRICTED
000010221 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000010221 981__ $$aI:(DE-Juel1)INM-4-20090406
000010221 981__ $$aI:(DE-Juel1)ZCH-20090406