001022104 001__ 1022104
001022104 005__ 20240226075427.0
001022104 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01225
001022104 037__ $$aFZJ-2024-01225
001022104 041__ $$aEnglish
001022104 1001_ $$0P:(DE-Juel1)188338$$aNazarzadeh, Kimia$$b0$$eCorresponding author
001022104 1112_ $$aHelmholtz AI$$cHamburg$$d2023-06-12 - 2023-06-14$$wGermany
001022104 245__ $$aHandgrip strength prediction using behavioural and anthropometric features in 179K individuals from the UK Biobank
001022104 260__ $$c2023
001022104 3367_ $$033$$2EndNote$$aConference Paper
001022104 3367_ $$2BibTeX$$aINPROCEEDINGS
001022104 3367_ $$2DRIVER$$aconferenceObject
001022104 3367_ $$2ORCID$$aCONFERENCE_POSTER
001022104 3367_ $$2DataCite$$aOutput Types/Conference Poster
001022104 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1706684309_10065$$xAfter Call
001022104 502__ $$cUniversity of Cologne
001022104 520__ $$aHandgrip strength (HGS) is an inexpensive, and non-invasive biomarker for assessing motor performance and identifying individuals at risk of motor impairment. Normative models can be used to identify abnormalities and brain changes that affect HGS and other motor functions. The current work examined machine learning-based approaches to predict HGS using a wide range of behavioural phenotypes and anthropometric measures. The data were obtained from healthy controls in the UK Biobank. Participants with dominant handgrip strength < 4 kg were excluded. We included 30 behavioural phenotypes, such as cognitive functions, anxiety, depression, and neuroticism. Anthropometric measures included BMI, height, and waist-to-hip circumference ratio. These features were analysed with or without the inclusion of gender as an additional feature, as males and females are known to show HGS differences. Linear SVM and Random Forest were used as predictive models. The performance was evaluated using the R2 score. The cross-validation scheme consisted of 10 repetitions and 5 folds. We also examined sample size effects. The study included 2,143 subjects with completed assessments of all behavioural phenotypes. The behavioural features had the lowest R2 score (median = 0.09), while anthropometric features showed a relatively higher R2 score (median = 0.49). Adding gender as a feature significantly increased the prediction scores but building the model separately for males and females decreased accuracy. In males, predictions were better than in females with anthropometric features. Furthermore, (non-)dominant HGS could be predicted, but the Left + Right HGS predictions were more accurate. Also, the sample size effects were analysed for anthropometrics from 10% (N=17,957) to 100% (N=179,542). The results demonstrate that the lower sample size of anthropometric features shows a high variance and the performance saturates around N=71k. Gender is a strong confound when modelling HGS. Anthropometric features are better predictors of HGS than behavioural features. Future work involves applying the pipeline to stroke patients to identify brain correlates, such as white matter intensity, and assessing its feasibility in clinical settings. In conclusion, HGS prediction using anthropometric and behavioural features can inform future research in the field of motor performance and have implications for early disease diagnosis and treatment.
001022104 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001022104 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001022104 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x2
001022104 536__ $$0G:(GEPRIS)458640473$$aSFB 1451 B05 - Einzelfallvorhersagen der motorischen Fähigkeiten bei Gesunden und Patienten mit motorischen Störungen (B05) (458640473)$$c458640473$$x3
001022104 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b1
001022104 7001_ $$0P:(DE-Juel1)180946$$aAntonopoulos, Georgios$$b2
001022104 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b3
001022104 7001_ $$0P:(DE-HGF)0$$aHensel, Lukas$$b4
001022104 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b5
001022104 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b6
001022104 8564_ $$uhttps://juser.fz-juelich.de/record/1022104/files/HelmholtzAI_Poster_Kimia_Nazarzadeh.pdf$$yOpenAccess
001022104 8564_ $$uhttps://juser.fz-juelich.de/record/1022104/files/HelmholtzAI_Poster_Kimia_Nazarzadeh.gif?subformat=icon$$xicon$$yOpenAccess
001022104 8564_ $$uhttps://juser.fz-juelich.de/record/1022104/files/HelmholtzAI_Poster_Kimia_Nazarzadeh.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001022104 8564_ $$uhttps://juser.fz-juelich.de/record/1022104/files/HelmholtzAI_Poster_Kimia_Nazarzadeh.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001022104 8564_ $$uhttps://juser.fz-juelich.de/record/1022104/files/HelmholtzAI_Poster_Kimia_Nazarzadeh.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001022104 909CO $$ooai:juser.fz-juelich.de:1022104$$pdriver$$pVDB$$popen_access$$popenaire
001022104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188338$$aForschungszentrum Jülich$$b0$$kFZJ
001022104 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)188338$$a Uni Köln$$b0
001022104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
001022104 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b1
001022104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180946$$aForschungszentrum Jülich$$b2$$kFZJ
001022104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b3$$kFZJ
001022104 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161406$$a Uni Köln$$b5
001022104 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161406$$a University Hospital Frankfurt$$b5
001022104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b6$$kFZJ
001022104 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b6
001022104 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001022104 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001022104 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
001022104 9141_ $$y2023
001022104 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001022104 920__ $$lyes
001022104 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001022104 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
001022104 980__ $$aposter
001022104 980__ $$aVDB
001022104 980__ $$aUNRESTRICTED
001022104 980__ $$aI:(DE-Juel1)INM-7-20090406
001022104 980__ $$aI:(DE-Juel1)INM-3-20090406
001022104 9801_ $$aFullTexts