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Introduction

 Handgrip strength (HGS) is a valid biomarker for motor performance [1].
* s an inexpensive, non-invasive, and commonly available measure in clinics.
e is a powerful health condition predictor [2].
* can diagnose and prognosticate acute stroke patients [2].
 Normative models can identify abnormality and in turn brain changes that affect HGS and
other motor functions
 Using a wide range of behavioural phenotypes and anthropometric measures.

Aim: Use anthropometric and behavioural features to build machine learning-based models
to predict HGS.

Data and Methods

 Data from non-MRI healthy controls in the UK Biobank
* Participants with dominant handgrip strength < 4 kg excluded [2]
* 30 behavioural phenotypes, e.g. cognitive functions, anxiety, depression, neuroticism [2-5]
 Anthropometric measures; BMI, Height and waist-to-hip circumference ratio [2]
* Features with or without the inclusion of gender (which confounds HGS)
* Models were also built for the genders separately
* Predictive models: Linear Support Vector Machine (SVM) and Random Forest
e CV scheme with 10 repeats and 5 folds
* RZscore (coefficient of determination) for evaluation
 Sample size effects were analysed
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Comparison of prediction scores among all features
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Figure 1:

e 2,143 subjects with completed assessments of all behavioural phenotypes
* Behavioural features have the lowest R? (median=.087)

* Anthropometric features showed high R? (median=.485)

 Adding gender as a feature significantly increased the prediction scores.
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Comparison of prediction scores for females (N=1,167) and males (N=976)
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* Building the model separately decreased accuracy significantly

 The difference between females and males was not pronounced within each feature type.
 Anthropometric features were still better than behavioural features

e The drop in accuracy (Fig. 1) indicates HGS information encoded in gender
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* The lower sample size of anthropometric features shows a high variance [6].
 Median accuracy first increased and then slightly decreased.

 The performance saturates around N=71k

Performance of anthropometric features for increasing sample sizes by gender
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Figure 4:

 The prediction accuracy dropped when males and females were analysed separately
* Predictions in males were better than in females at all sample sizes.

 The difference became pronounced and more significant with increasing sample size.

Conclusion

* Linear SVM outperformed Random Forest.

* Using gender as an additional feature considerably increased prediction accuracy.
 Gender is a strong confound when modelling HGS.

 Males predicted HGS better than females with anthropometric features.

 (Non-)dominant HGS could be predicted but the HGS (Left + Right) predictions were more
accurate.

 Deploy the models to predict individuals with MRI data
e I|dentify brain correlates (e.g. WM intensity)
* Apply the pipeline to stroke patients
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