

Handgrip strength prediction using behavioural and anthropometric features in 179K individuals from the UK Biobank

Kimia Nazarzadeh ^{1,2}, Simon B. Eickhoff ^{2,3}, Georgios Antonopoulos ^{2,3}, Federico Raimondo ^{2,3}, Lukas Hensel ^{1,6}, Christian Grefkes ^{1,4,5}, Kaustubh R. Patil ^{2,3}

- ¹ Department of Neurology, University Hospital Cologne and Medical Faculty, University of Cologne, Germany
- ² Institute of Neuroscience and Medicine (Brain & Behavior INM-7), Research Centre Jülich, Germany
- ³ Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany

Introduction

- Handgrip strength (HGS) is a valid biomarker for motor performance [1].
 - is an inexpensive, non-invasive, and commonly available measure in clinics.
 - is a powerful health condition predictor [2].
 - can diagnose and prognosticate acute stroke patients [2].
- Normative models can identify abnormality and in turn brain changes that affect HGS and other motor functions
- Using a wide range of behavioural phenotypes and anthropometric measures.

Aim: Use anthropometric and behavioural features to build machine learning-based models to predict HGS.

Data and Methods

- Data from non-MRI healthy controls in the UK Biobank
- Participants with dominant handgrip strength < 4 kg excluded [2]
- 30 behavioural phenotypes, e.g. cognitive functions, anxiety, depression, neuroticism [2-5]
- Anthropometric measures; BMI, Height and waist-to-hip circumference ratio [2]
- Features with or without the inclusion of gender (which confounds HGS)
- Models were also built for the genders separately
- Predictive models: Linear Support Vector Machine (SVM) and Random Forest
 - CV scheme with 10 repeats and 5 folds
 - R² score (coefficient of determination) for evaluation
 - Sample size effects were analysed

Figure 1:

- 2,143 subjects with completed assessments of all behavioural phenotypes
- Behavioural features have the lowest R² (median=.087)
- Anthropometric features showed high R² (median=.485)
- Adding gender as a feature significantly increased the prediction scores.

References

[1] R. C. Neidenbach et al., "The value of hand grip strength (HGS) as a diagnostic and prognostic biomarker in congenital heart disease," Cardiovasc. Diagn. Ther., vol. 9, no. Suppl 2, pp. S187–S197, Oct. 2019, doi: 10.21037/cdt.2019.09.16.
[2] Jiang, R. et al., "Associations between grip strength, brain structure, and mental health in > 40,000 participants from the UK Biobank". BMC Med 20, 286, 2022, doi.org/10.1186/s12916-022-02490-2.

[3] Davis, Katrina A S et al. "Mental health in UK Biobank - development, implementation and results from an online questionnaire

completed by 157 366 participants: a reanalysis." BJPsych open vol. 6,2 e18. 6 Feb. 2020, doi:10.1192/bjo.2019.100. [4] Harris, M.A. et al, "Structural neuroimaging measures and lifetime depression across levels of phenotyping in UK biobank". Transl Psychiatry 12, 157 (2022). doi.org/10.1038/s41398-022-01926-w.

[5] Firth J, Firth JA, Stubbs B, et al. Association Between Muscular Strength and Cognition in People With Major Depression or Bipolar Disorder and Healthy Controls. JAMA Psychiatry. 2018;75(7):740–746. doi:10.1001/jamapsychiatry.2018.0503
[6] Varoquaux G. "Cross-validation failure: Small sample sizes lead to large error bars". Neuroimage. 2018;180(Pt A):68-77, doi:10.1016/j.neuroimage.2017.06.061

Acknowledgements: "This research has been conducted using data from UK Biobank, a major biomedical database". www.ukbiobank.ac.uk

- ⁴ Centre for Neurology and Neurosurgery, University Hospital Frankfurt, Germany
- ⁵ Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany
- ⁶ LVR Clinic Düsseldorf Clinics at the Heinrich-Heine-University Düsseldorf, Germany

Figure 2:

- Building the model separately decreased accuracy significantly
- The difference between females and males was not pronounced within each feature type.
- Anthropometric features were still better than behavioural features
- The drop in accuracy (Fig. 1) indicates HGS information encoded in gender

Figure 3:

- The lower sample size of anthropometric features shows a high variance [6].
- Median accuracy first increased and then slightly decreased.
- The performance saturates around N=71k

Figure 4:

- The prediction accuracy dropped when males and females were analysed separately
- Predictions in males were better than in females at all sample sizes.
- The difference became pronounced and more significant with increasing sample size.

Conclusion

- Linear SVM outperformed Random Forest.
- Using gender as an additional feature considerably increased prediction accuracy.
- Gender is a strong confound when modelling HGS.
- Males predicted HGS better than females with anthropometric features.
- (Non-)dominant HGS could be predicted but the HGS (Left + Right) predictions were more accurate.

Next steps

- Deploy the models to predict individuals with MRI data
- Identify brain correlates (e.g. WM intensity)
- Apply the pipeline to stroke patients

Contact	
Kimia Nazarzadeh Kimia.nazarzadeh@uk-koeln.de	Department of Neurology, Uniklinik Köln
	Applied Machine Learning, Institute of Neuroscience and Medicine (INM-7), Research Center, Jülich

