001022109 001__ 1022109
001022109 005__ 20240226075427.0
001022109 037__ $$aFZJ-2024-01230
001022109 041__ $$aEnglish
001022109 1001_ $$0P:(DE-Juel1)180161$$aBehner, Gerrit$$b0
001022109 1112_ $$aElectronic Properties of 2-dimensional Systems$$cGrenoble$$d2023-07-10 - 2023-07-13$$gEP2DS MSS$$wFrance
001022109 245__ $$aIn-plane magnetic field induced asymmetric magnetoconductance in topologicalinsulator kinks
001022109 260__ $$c2023
001022109 3367_ $$033$$2EndNote$$aConference Paper
001022109 3367_ $$2BibTeX$$aINPROCEEDINGS
001022109 3367_ $$2DRIVER$$aconferenceObject
001022109 3367_ $$2ORCID$$aCONFERENCE_POSTER
001022109 3367_ $$2DataCite$$aOutput Types/Conference Poster
001022109 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1706700283_5584$$xAfter Call
001022109 500__ $$aDFG Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769
001022109 520__ $$aThe study of the transport properties of quasi one-dimensional topological insulator (TI) nanostructuresunder the application of an in-plane magnetic field is crucial for the later realization oftopological quantum computation building blocks. We present low temperature measurements ofselectively grown TI-Kinks under the application of an in-plane magnetic field. A dependence of theTI-Kink’s resistance on the angle of the in-plane magnetic field is visible in the magnetotransportdata resulting in a π-periodic change of the conductance. This phenomenon originates from anorbital effect, leading to a alignment or misalignment of the phase-coherent states on the bottom andtop surface of the topological insulator. Respectively, the aligned and misaligned states leadto a increased or decreased conductance in the device. The measurement results are supportedtheoretically by the analysis of a surface Rashba-Dirac model and tight-binding simulations of aneffective 3-dimensional mode
001022109 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001022109 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001022109 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001022109 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b1
001022109 7001_ $$0P:(DE-Juel1)180184$$aMoors, Kristof$$b2
001022109 7001_ $$0P:(DE-HGF)0$$aZimmermann, Erik$$b3
001022109 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b4
001022109 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b5
001022109 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b6
001022109 909CO $$ooai:juser.fz-juelich.de:1022109$$pVDB
001022109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180161$$aForschungszentrum Jülich$$b0$$kFZJ
001022109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b1$$kFZJ
001022109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180184$$aForschungszentrum Jülich$$b2$$kFZJ
001022109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001022109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b4$$kFZJ
001022109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b5$$kFZJ
001022109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b6$$kFZJ
001022109 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001022109 9141_ $$y2023
001022109 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001022109 980__ $$aposter
001022109 980__ $$aVDB
001022109 980__ $$aI:(DE-Juel1)PGI-9-20110106
001022109 980__ $$aUNRESTRICTED