Hauptseite > Publikationsdatenbank > In-plane magnetic field induced asymmetric magnetoconductance in topologicalinsulator kinks > print |
001 | 1022109 | ||
005 | 20240226075427.0 | ||
037 | _ | _ | |a FZJ-2024-01230 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Behner, Gerrit |0 P:(DE-Juel1)180161 |b 0 |
111 | 2 | _ | |a Electronic Properties of 2-dimensional Systems |g EP2DS MSS |c Grenoble |d 2023-07-10 - 2023-07-13 |w France |
245 | _ | _ | |a In-plane magnetic field induced asymmetric magnetoconductance in topologicalinsulator kinks |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1706700283_5584 |2 PUB:(DE-HGF) |x After Call |
500 | _ | _ | |a DFG Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769 |
520 | _ | _ | |a The study of the transport properties of quasi one-dimensional topological insulator (TI) nanostructuresunder the application of an in-plane magnetic field is crucial for the later realization oftopological quantum computation building blocks. We present low temperature measurements ofselectively grown TI-Kinks under the application of an in-plane magnetic field. A dependence of theTI-Kink’s resistance on the angle of the in-plane magnetic field is visible in the magnetotransportdata resulting in a π-periodic change of the conductance. This phenomenon originates from anorbital effect, leading to a alignment or misalignment of the phase-coherent states on the bottom andtop surface of the topological insulator. Respectively, the aligned and misaligned states leadto a increased or decreased conductance in the device. The measurement results are supportedtheoretically by the analysis of a surface Rashba-Dirac model and tight-binding simulations of aneffective 3-dimensional mode |
536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 0 |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Jalil, Abdur Rehman |0 P:(DE-Juel1)171826 |b 1 |
700 | 1 | _ | |a Moors, Kristof |0 P:(DE-Juel1)180184 |b 2 |
700 | 1 | _ | |a Zimmermann, Erik |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Schüffelgen, Peter |0 P:(DE-Juel1)165984 |b 4 |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 5 |
700 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 6 |
909 | C | O | |o oai:juser.fz-juelich.de:1022109 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180161 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171826 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)180184 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)165984 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128634 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 0 |
914 | 1 | _ | |y 2023 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|