001     1022109
005     20240226075427.0
037 _ _ |a FZJ-2024-01230
041 _ _ |a English
100 1 _ |a Behner, Gerrit
|0 P:(DE-Juel1)180161
|b 0
111 2 _ |a Electronic Properties of 2-dimensional Systems
|g EP2DS MSS
|c Grenoble
|d 2023-07-10 - 2023-07-13
|w France
245 _ _ |a In-plane magnetic field induced asymmetric magnetoconductance in topologicalinsulator kinks
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1706700283_5584
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a DFG Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769
520 _ _ |a The study of the transport properties of quasi one-dimensional topological insulator (TI) nanostructuresunder the application of an in-plane magnetic field is crucial for the later realization oftopological quantum computation building blocks. We present low temperature measurements ofselectively grown TI-Kinks under the application of an in-plane magnetic field. A dependence of theTI-Kink’s resistance on the angle of the in-plane magnetic field is visible in the magnetotransportdata resulting in a π-periodic change of the conductance. This phenomenon originates from anorbital effect, leading to a alignment or misalignment of the phase-coherent states on the bottom andtop surface of the topological insulator. Respectively, the aligned and misaligned states leadto a increased or decreased conductance in the device. The measurement results are supportedtheoretically by the analysis of a surface Rashba-Dirac model and tight-binding simulations of aneffective 3-dimensional mode
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Jalil, Abdur Rehman
|0 P:(DE-Juel1)171826
|b 1
700 1 _ |a Moors, Kristof
|0 P:(DE-Juel1)180184
|b 2
700 1 _ |a Zimmermann, Erik
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 4
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 5
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 6
909 C O |o oai:juser.fz-juelich.de:1022109
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180161
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171826
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180184
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2023
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21